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Abstract: Following the analysis of [1], we calculate the spectrum of fluctuations of a

probe Dk-brane in the background of N Dp-branes, for k = p, p + 2, p + 4 and p < 5.

The result corresponds to the mesonic spectrum of a (p+ 1)-dimensional super-Yang-Mills

(SYM) theory coupled to ‘dynamical quarks’, i.e., fields in the fundamental representation

— the latter are confined to a defect for k = p and p+2. We find a universal behaviour where

the spectrum is discrete and the mesons are deeply bound. The mass gap and spectrum

are set by the scale M ∼ mq/geff(mq), where mq is the mass of the fundamental fields and

geff (mq) is the effective coupling evaluated at the quark mass, i.e., g2
eff(mq) = g2

YMN mp−3
q .

We consider the evolution of the meson spectra into the far infrared of three-dimensional

SYM, where the gravity dual lifts to M-theory. We also argue that the mass scale appearing

in the meson spectra is dictated by holography.
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1. Introduction

The AdS/CFT correspondence and its extensions have provided a powerful framework for

the study of strongly coupled gauge theories in various dimensions. The original corre-

spondence [2, 3], that certain conformal field theories are equivalent to string theory on

AdS backgrounds, was extended in [4] to a more general gauge/gravity duality in various

dimensions. Itzhaki et al [4] studied the general case of a stack of N coincident Dp-branes

in the limit in which brane modes decouple from the bulk. They argued that the super-

Yang-Mills U(N) gauge theory on the (p+ 1)-dimensional worldvolume of the Dp-branes is

dual to the closed string theory on the ‘near-horizon’ background induced by the branes.

These dualities follow from a straightforward extension of the usual decoupling limit [5]

now applied to Dp-branes [4]. For general p (6= 3), the gauge theory is distinguished from

the conformal case by the fact that the Yang-Mills coupling gYM is dimensionful. Hence

there is a power-law running of the effective coupling with the energy scale U :

g2
eff = g2

YMN Up−3 . (1.1)
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The duality relates the energy scale and the radial coordinate r transverse to the Dp-brane

worldvolume in the usual way, U = r/α′. In the dual background, the absence of conformal

invariance in the general case is manifest in the radial variation of both the string coupling

(or dilaton) and the spacetime curvature — see below for details. As the supergravity

background is only trustworthy for weak string coupling and small curvatures, it provides

a dual description of the theory which is reliable for an intermediate regime of energies. In

this regime, the dual gauge theory is always strongly coupled.

In a complementary direction, Karch and Katz [6] demonstrated that probe D7-branes

can be used to introduce fundamental matter fields into the standard AdS/CFT correspon-

dence from D3-branes. Inserting n D7-branes into the AdS5× S5 background corresponds

to coupling n flavours of ‘dynamical quarks’ (i.e., n hypermultiplets in the fundamental rep-

resentation) to the original four-dimensional SYM theory. Adding these extra branes/fields

also reduces the number of conserved supercharges from sixteen to eight. The hypermul-

tiplets arise from the lightest modes of strings stretching between the D7- and D3-branes

and their mass is mq = L/2πα′ where L is the coordinate distance between the two sets of

branes (and as usual, 1/2πα′ is the string tension). The resulting gauge theory containing

quarks has a rich spectrum of quark-antiquark bound states, which henceforth we refer to

as ‘mesons’ [1]. In the decoupling limit, the duals are open strings attached to the D7-

branes and the calculation of the meson spectrum in the field theory becomes an exercise

in studying the fluctuation of probe branes. These ideas have been further developed in

a number of directions towards the goal of constructing gauge/gravity duals for QCD-like

theories [7 – 9] and in particular, the meson spectrum has been studied in a number of

different contexts [1, 10].

In this paper, we use the gauge/gravity duality to explore the meson spectra of such

SYM theories containing fundamental fields in different numbers of spacetime dimensions.

In particular, following [1], we calculate the spectrum of fluctuations of a probe Dk-brane

supersymmetrically embedded in the background of N Dp-branes, for k = p, p + 2, p + 4

and p < 5. This corresponds to the mesonic spectrum of a U(N) super-Yang-Mills theory

in p+ 1 dimensions coupled to a hypermultiplet in the fundamental representation. Again,

these dynamical quarks arise as the lightest modes of the (k, p) and (p, k) strings with

their mass given by mq = L/2πα′. Also as before, the number of conserved supercharges is

reduced to eight by the addition of the fundamental hypermultiplet. A consequence of the

supersymmetric embedding of the probe brane is that the quarks are confined to a defect

of codimension two and one for k = p and p+2, respectively. So it is only for k = p+4 that

the D-brane configuration yields fundamental fields propagating in the full p+1 dimensions

of the gauge theory.1

The resulting meson spectra for all of these different configurations display certain

universal characteristics, which are common to the original D3-D7 results [1]. In general,

the spectra are discrete and the mesons are deeply bound. Up to numerical coefficients,

1While defect theories are interesting in their own right — see, e.g., [11] — in the present context,

one might consider compactifying the Dp-brane worldvolume directions transverse to the Dk-brane for the

k = p and p + 2 cases. The latter results in a low-energy theory where the gauge and fundamental fields

have a common dimension, as in [7].
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the meson masses can all be written in terms of a single scale:

M ∼ mq/geff (mq) , (1.2)

where mq is the quark mass and geff (mq) is the effective coupling (1.1) evaluated at this

mass scale, g2
eff(mq) = g2

YMN mp−3
q . In particular then, eq. (1.2) gives the mass gap of the

spectrum. The detailed calculation of these results is presented in section 2.

As an example, for N background D2-branes and a D6-brane probe, we find that the

meson masses scale as M ∝ m
3/2
q /(g2

YMN)1/2. It is interesting to note then that in [12], a

similar study found M ∝ mq for the same configuration of branes. The resolution of this

apparent discrepancy is that the latter analysis considers very low quark masses in the far

infrared, i.e., mq ¿ gYM, where the dual gravity configuration actually lifts to M-theory.

To better understand this behaviour in different regimes of the field theory, in section 3, we

study probe D2- and D4-branes in the D2-brane background, for which computations can

easily be extrapolated between the type IIA and M-theory regimes. Hence, in this section,

we calculate the meson spectra in (2 + 1)-dimensional SYM coupled to a fundamental

hypermultiplet confined to codimension-two and -one defects, in the far infrared regime of

the theory.

Finally, section 4 presents a discussion of our results and future directions. In partic-

ular, we present a simple argument that the mass scale of the meson spectra is dictated

by the consistency of holography and we briefly describe several tests of the latter idea. A

number of technical results are provided in subsequent appendices. While this paper was in

preparation, we became aware of [13] which addresses the same basic problem as considered

here, however, we provide some complementary analyses and a different interpretation of

the results.

2. Supergravity meson spectra in various dimensions

In this section, we study the excitations of a Dk-brane probe (with k = p + 4, p + 2, p)

supersymmetrically embedded in the ‘near horizon’ geometry induced by N coincident Dp-

branes (with p < 5).2 These calculations yield the spectrum of mesonic states in the dual

(p + 1)-dimensional field theory with eight supercharges. We first review the background

geometry induced by the Dp-branes and then proceed to compute the spectra of fluctuations

of the probe Dk-branes.

2.1 Background geometry

The supergravity solution corresponding to N coincident Dp-branes is, in the string frame

(see, e.g., [15] and references therein)

ds2 = f−1/2
p ds2(E(1,p)) + f1/2

p d~Y · d~Y
e2φ = f (3−p)/2

p C0...p = −(f−1
p − 1) (2.1)

2There is no dual field theory for p ≥ 6 as no decoupling limit is possible [4, 14]. We comment on the

interesting case of p = 5 in section 4.
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where ds2(E(1,p)) denotes a flat spacetime metric with one time and p spatial directions.

The Y A, with A = 1, . . . , 9−p, parametrize the (9−p)-dimensional space transverse to the

Dp-branes.3 The harmonic function fp depends on the transverse radial coordinate r = |~Y |

fp = 1 +
(rp
r

)7−p
(2.2)

where the constant rp is defined in terms of the number N of Dp-branes, the string coupling

constant gs, and the inverse string tension α′:

r7−p
p = gsN (4πα′)(7−p)/2 Γ( 7−p

2
) /4π . (2.3)

Following [4], we take the decoupling limit (in which the open string modes propagating

on the Dp-branes decouple from the bulk closed string modes) with

g2
YM = (2π)p−2gs α

′(p−3)/2 = fixed, α′ → 0. (2.4)

This limit also holds r/α′ constant [2] so that eq. (2.1) reduces to the ‘near horizon’ solution:

ds2 =

(
r

rp

)(7−p)/2
ds2(E(1,p)) +

(rp
r

)(7−p)/2
d~Y · d~Y

e2φ =
(rp
r

)(7−p)(3−p)/2
C0...p = −

(
r

rp

)7−p
. (2.5)

This supergravity background then provides a dual description of U(N) super-Yang-Mills

theories in p+1 dimensions, the worldvolume field theory on the Dp-branes. In accord with

the duality, both the background and the field theory have sixteen supersymmetries. The

isometry group for the background geometry (2.5) induced by the Dp-branes is SO(1, p)×
SO(9− p) [4]. From the perspective of the dual gauge theory, SO(1, p) corresponds to the

spacetime Lorentz symmetry while SO(9− p) is the R-symmetry group.

As mentioned in the introduction, the supergravity solution (2.5) is a trustworthy

background provided that both the curvatures and string coupling are small. This limits

the supergravity description to an intermediate regime of energies in the field theory or of

radial distances in the background. In terms of the effective coupling (1.1), this restriction

is succinctly expressed as [4]

1¿ geff ¿ N
4

7−p . (2.6)

Hence the field theory is strongly coupled where the dual supergravity description is valid.

For p < 3, the spacetime curvature is large for very large values of r, invalidating the

supergravity description. However, in this UV regime, the coupling runs to geff ¿ 1

and so perturbative field theory is applicable. For small values of r, both the effective

coupling and the dilaton are large. However, another dual description can be found to

describe this infrared regime with geff À N
4

7−p [4]. For p > 3, the coupling runs in the

reverse direction. Hence perturbative SYM applies in the far infrared where one finds

large spacetime curvatures for small r. The effective coupling grows in the UV and a new

dual theory must be found for very large r. For p = 3, the theory is conformal and the

supergravity background (2.5) can be used for all energy regimes [2].

3These directions correspond to xA with A = p + 1, p + 2, . . . , 9 in the arrays presented below — see,

e.g., eq. (2.7).
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2.2 Meson spectrum in Dp-D(p+ 4)

Consider the following configuration of N coincident Dp-branes (0 ≤ p < 5) and one

D(p+4)-brane probe, in which the D(p+4)-brane is parallel to the Dp-branes’ worldvolume

directions:

0 1 · · · p p+ 1 p+ 2 p+ 3 p+ 4 p+ 5 · · · 9

Dp × × · · · ×
D(p+ 4) × × · · · × × × × ×

(2.7)

Embedding the D(p + 4)-brane in the (p + 5) · · · 9 plane at |~Y | = L, the configuration

of branes remains supersymmetric but only half of the original sixteen supercharges are

preserved. Correspondingly, the SO(9− p) symmetry of the background geometry (2.5) is

broken to SO(4) ∼ SU(2)R×SU(2)L acting on Y 1Y 2Y 3Y 4 and for L 6= 0 (which is the case

of interest here) SO(4 − p) acting in the remaining transverse space around the D(p + 4)-

brane. The R-symmetry group for fields on the D(p + 4)-brane is SU(2)R × SO(4 − p).
The fields can be classified according to their transformation properties under SU(2)R ×
SU(2)L × SO(4− p).4

The induced metric on the D(p+ 4)-brane probe is, from (2.5),

ds2 =

(√
ρ2 + L2

rp

) 7−p
2

ds2(E(1,p)) +

(
rp√

ρ2 + L2

) 7−p
2

(dρ2 + ρ2dΩ2
3) (2.8)

where ρ2 = r2 − L2 and Ω3 are spherical coordinates in the (p + 1) · · · (p + 4)-space. The

dual gauge theory is (p+ 1)-dimensional U(N) SYM coupled to a hypermultiplet of matter

fields in the fundamental representation. The quark mass is the distance L separating the

D(p+ 4)-brane from the Dp-branes multiplied by the string tension 1/2πα′:

mq =
L

2πα′
. (2.9)

We wish to calculate the spectrum of mesons corresponding to open string excita-

tions on the D(p + 4)-brane — the analysis closely follows that of [1]. These mesons are

represented by excitations of the scalar and gauge worldvolume fields. Their dynamics is

governed by the D(p+ 4)-brane action. The relevant terms of the latter include the Dirac-

Born-Infeld (DBI) action and only the term with C(p+1) from the Wess-Zumino action (see,

e.g., [15] and references therein):

S = SDBI − τp+4
(2πα′)2

2

∫
P [C(p+1)] ∧ F ∧ F (2.10)

where

SDBI = −τp+4

∫
dp+5σe−φ

√
−det(P [G]ab + 2πα′Fab) . (2.11)

4We note, however, that the SO(4 − p) properties tend to be less useful. In particular, this group only

really acts for p ≤ 2.
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Here, τp+4 = 2π/gs(4π
2α′)(p+5)/2 is the D(p + 4)-brane tension and, as usual, P denotes

the pullback of a bulk field to the probe brane’s worldvolume [16]. The ten-dimensional

spacetime metric Gab and the bulk Ramond-Ramond (RR) form C(p+1) were given in (2.5).5

Note that the action (2.10) represents the bosonic part of the full action invariant

under eight supercharges and that it has SU(2)R × SU(2)L × SO(4 − p) symmetry corre-

sponding to rotations in the transverse space. The Wess-Zumino term breaks the symmetry

interchanging the SU(2)R and SU(2)L. In the dual gauge theory, this corresponds to the

asymmetry of SU(2)L and SU(2)R: the former commutes with the supercharges while the

latter, as the R-symmetry group of the theory, does not.

We begin by considering fluctuations in the position of the probe D(p + 4)-brane.

Working in the static gauge, these are scalar fluctuations χA about the fiducial embedding:

Y A = LδA9−p + 2πα′χA, A = 5, . . . , 9− p .

We only need to retain terms in eq. (2.10) to quadratic order in these fluctuations and so

the relevant part of the Lagrangian density for fluctuations in the scalar fields is

L ' −τp+4 e
−φ√−det gab

[
1 +

(2πα′)2

2

(rp
r

)(7−p)/2
gcd∂cχ

A∂dχ
A

]
, (2.12)

where gab denotes the induced metric (2.8) on the D(p + 4)-brane. Summation over the

repeated index A is implied. The factor e−φ
√−det gab is independent of the fluctuations

χA, which is a reflection of the supersymmetry of the brane configuration. The latter

dictates there be no potential for the position of the probe brane. Retaining terms only

to quadratic order in the fluctuations, we can drop terms containing χA from the factor

gcd/r(7−p)/2 and so we can use (2.8) as the induced metric on the probe brane in the final

result.

The equations of motion for each of the 5− p fluctuations resulting from the variation

of the Lagrangian density (2.12) are:

∂a

[
ρ3
√

deth

(ρ2 + L2)(7−p)/4 g
ab∂bχ

]
= 0 , (2.13)

where we have taken χ to be any one of the χA fluctuations. Also hij is the metric on the

unit three-sphere which, along with radial coordinate ρ, spans the (Y 1, . . . , Y 4) directions.

Expanding the equation of motion, we obtain:

r7−p
p

(ρ2 + L2)(7−p)/2 ∂µ∂
µχ+

1

ρ3
∂ρ(ρ

3∂ρχ) +
1

ρ2
∇2

[3] χ = 0 (2.14)

where ∇2
[3] is the Laplacian on the unit three-sphere. Next, using separation of variables,

we write the modes as

χ = φ(ρ)eik·x Y`3(S3) , (2.15)

5The index labelling conventions here and in the following are: The indices a, b, c, . . . denote the world-

volume directions of the probe brane. Greek indices µ, ν denote probe brane directions parallel to the

background branes. For directions in the probe brane worldvolume orthogonal to the background branes,

we use spherical polar coordinates with radius ρ and angular coordinate indices denoted by indices i, j, k.

Finally, indices A,B,C, . . . denote background directions orthogonal to the Dp-brane worldvolume.

– 6 –
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where Y`3(S3) are spherical harmonics on the S3 satisfying

∇2
[3] Y`3 = −`3(`3 + 2)Y`3 , (2.16)

and transforming in the ( `32 ,
`3
2 ) representation of SO(4) = SU(2)L × SU(2)R. Then, sub-

stituting (2.15) into (2.14), and setting

% =
ρ

L
M̄2 = −k

2r7−p
p

L5−p , (2.17)

we obtain the following equation for φ(ρ) = φ(%):

∂2
%φ(%) +

3

%
∂%φ(%) +

(
M̄2

(1 + %2)(7−p)/2 −
`3(`3 + 2)

%2

)
φ(%) = 0 . (2.18)

The solution to this differential equation must be real-valued and regular [1]. The solutions

must also be normalizable in order to be dual to a meson state in the field theory. Thus,

real solutions were chosen that were regular at the origin. The eigenvalues M̄ were then

determined by requiring that the solutions were convergent at ρ → ∞. For p = 3, the

solutions can be determined in terms of hypergeometric functions [1] — see appendix A.6

However, for general p, there are no known analytic solutions to this equation and one

must resort to numerics.

Solving (2.18) to find the eigenfunctions φ(%) and the dimensionless eigenvalue M̄ ,

yields the (p+ 1)-dimensional mass spectrum of mesons M 2 = −k2 = M̄2L5−p/r7−p
p . The

mass eigenvalues will depend on the radial quantum number n (which corresponds to the

number of nodes in φ(%), the radial profile) and the angular momentum quantum number

`3. Hence we denote the eigenvalues for these scalar fluctuations as M̄2
s (n, `3).

Using (2.4) and (2.9), the spectrum of excitations can be expressed in terms of field

theory quantities as follows:

M2 =
m5−p
q

g2
YMN

(
2p−2π(p+1)/2

Γ(7−p
2 )

)
M̄2 . (2.19)

Further then from eq. (1.1), we see that the meson masses scale as M ∝ mq/geff (mq).

Turning to the fluctuations of the gauge fields on the probe brane, the equations of

motion for these fields follow from (2.10) as

∂a

(
e−φ
√
−det gcdF

ab
)
− 7− p
r7−p
p

ρ (ρ2 + L2)(5−p)/2 εbij ∇[3]iAj = 0 , (2.20)

where εbij is a antisymmetric tensor density on the three-sphere, taking values ±1. Also

∇[3]i is the covariant derivative on the S3 of unit radius, and coordinates are indexed as

described in footnote 5. The first term comes from the Dirac-Born-Infeld part of the action,

while the second is from the Wess-Zumino term and is only present if b corresponds to an

S3 index.

6Analytic solutions can also be found for eq. (2.18) in the case p = 5 but one finds there are no

normalizable solutions!
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We proceed to solve (2.20) by expanding Aµ and Aρ in (scalar) spherical harmonics

and Ai in vector spherical harmonics. There are three classes of vector spherical harmon-

ics. The first is the covariant derivative on the three-sphere of the usual scalar spherical

harmonics, ∇[3]iY`3(S3), while the other two, labelled Y `3,±i (S3), have `3 ≥ 1, transform

in the ( `3∓1
2 , `3±1

2 ) of SO(4), and satisfy

∇2
[3]Y

`3,±
j −RkjY`3,±k = −(`3 + 1)2Y`3,±j ,

εijk∇[3]jY`3,±k = ±(`3 + 1)Y`3 ,±i ,

∇i[3]Y
`3,±
i = 0 (2.21)

where Rkj = 2δkj is the Ricci tensor on the three-sphere of unit radius.

We first consider modes satisfying ∂µA
µ = 0. In this case, the equation of motion for

Aµ decouples from the other equations of motion, so we have the following two types of

modes:

Type 1: Aµ = ζµφ1(ρ)eik·x Y`3(S3), k · ζ = 0, Aρ = 0, Ai = 0 (2.22)

and

Type 2: Aµ = 0, Aρ = φ2(ρ)eik·x Y`3(S3), Ai = φ̃2(ρ)eik·x∇[3]iY`3(S3). (2.23)

Modes containing the Y `3,±i spherical harmonics will not mix with other modes because

they are in different representations of SO(4) [1]. Hence a third independent set of modes

is

Type 3: Aµ = 0, Aρ = 0, Ai = φ±3 (ρ)eik·x Y`3,±i (S3). (2.24)

There may be other modes with ∂µAµ 6= 0. Such modes with k2 = 0 need not be

considered because they do not yield regular solutions. On the other hand, modes with

∂µAµ 6= 0 and k2 6= 0 can always be put in a gauge so that they become type 2 modes and

hence these modes are equivalent to modes discussed above in the ∂µAµ = 0 gauge.

We now compute the spectrum for each type of mode. For type 1 modes, the equations

with b = % and b = i are automatically satisfied, so we need only consider the equation

with b = µ. This equation simplifies from (2.20) to

r7−p
p

(ρ2 + L2)(7−p)/2 ∂ν∂
νAµ +

1

ρ3
∂ρ(ρ

3∂ρAµ) +
1

ρ2
∇2

[3]Aµ = 0 ,

and, upon substitution of (2.22), becomes

1

%3
∂%(%

3∂%φ1(%)) +
M̄2

(1 + %2)(7−p)/2 φ1(%)− `3(`3 + 2)

%2
φ1(%) = 0. (2.25)

The (p+ 1)-dimensional mass spectrum of mesons is then given by (2.19) with the dimen-

sionless eigenvalues M̄ = M̄1(n, `3) determined by this equation. However, expanding out

the first term in eq. (2.25), one finds that it precisely matches the previous radial equation

(2.18) for the scalar fluctuations. Hence the spectra of these two sets of fluctuations are

identical, i.e., M1(n, `3) = Ms(n, `3).

– 8 –
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For type 2 modes with `3 = 0, the gauge fields on the three sphere vanish, i.e., Ai = 0.

The only nontrivial solution of eq. (2.20) (setting b = µ) is then φ2(ρ) ∼ ρ−3. However,

requiring a regular solution at the origin forces us to take the trivial solution φ2(ρ) = 0.

Thus the physical type 2 modes only exist for `3 ≥ 1.

Putting b = µ in (2.20) and substituting (2.23) for the modes, the type 2 radial modes

(`3 ≥ 1) satisfy
1

ρ
∂ρ
(
ρ3φ2(ρ)

)
= `3(`3 + 2)φ̃2(ρ). (2.26)

Using (2.26), the equations obtained from (2.20) with b = µ and b = ρ are equivalent.

After using (2.17), we obtain

∂%

(
1

%
∂%(%

3φ2(%))

)
− `3(`3 + 2)φ2(%) +

M̄2%2

(1 + %2)(7−p)/2 φ2(%) = 0, (2.27)

and the solutions of this equation determine the spectrum of meson masses which we

denote as M̄2
2 (n, `3). In this case, if we expand out eq. (2.27) in terms of φ̂(%) = %φ2(%),

we find that the result again matches eq. (2.18). Hence the spectrum of the type 2 modes

precisely matches that of the scalar fluctuations and the type 1 gauge fluctuations with

M2(n, `3) = Ms(n, `3) with `3 ≥ 1.

Finally, for type 3 modes, the equations (2.20) with b = µ and b = ρ are automatically

satisfied. The equation with b = i, an S3 coordinate, becomes:

∂µ∂
µAi +

1

ρ
∂ρ

(
ρ(ρ2 + L2)(7−p)/2

r7−p
p

∂ρAi

)
+

(ρ2 + L2)(7−p)/2

ρ2r7−p
p

(∇2
[3] Ai −RjiAj)

−(7− p)
r7−p
p

(ρ2 + L2)(5−p)/2εijk∇[3]jAk = 0 .

Substituting (2.24) for Ai, using the identities (2.21), and making the substitutions (2.17),

we find the following equation for φ±3 (%):

1

%
∂%

(
%(1 + %2)

7−p
2 ∂%φ

±
3 (%)

)
+ M̄2φ±3 (%)− (`3 + 1)2 (1 + %2)

%2

7−p
2

φ±3 (%)

∓(7− p)(`3 + 1)(1 + %2)
5−p

2 φ±3 (%) = 0 (2.28)

Once again, the spectrum of meson masses is given by (2.19) with the values of M̄ =

M̄3,±(n, `3) determined from this equation. The spectrum of mesons can again be related

to the other spectra with M3,±(n, `3) = Ms(n, `3 ± 1) with `3 ≥ 1. While in general the

spectra can only be evaluated numerically, the previous relation is established analytically

by mapping eq. (2.18) to eq. (2.28). One finds that the type 3,± modes with `3 = L can

be related to the solutions φ(%) of eq. (2.18) with `3 = L± 1 via7

φ−3,`3=L = %L∂%
[
%1−Lφ`3=L−1

]
(2.29)

7In more detail, the relation (2.29) is established as follows: Set `3 = L− 1 in eq. (2.18). Re-express the

equation in terms of φ = %L−1F (%), where the power was chosen to eliminate the term (L2 − 1)/%2 φ. Next

one multiplies the result by (1 + %2)(7−p)/2 and takes a derivative with respect to %. F only appears in the

resulting equation through the derivatives F ′, F ′′ and F ′′′ (i.e., there are no terms proportional to F ) and

so the result can be re-expressed as a second-order equation in terms of G(%) = F ′(%)/%L, which one finds

matches precisely eq. (2.28) for φ−3,`3=L.
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φ+
3,`3=L = %−L−2∂%

[
%L+3φ`3=L+1

]
.

There is actually a subtlety for the φ−3 profiles. Typically the radial ODE’s yield

asymptotic solutions which behave like φ(%) = b1%
−α1 + b2%

−α2 in the limit % → ∞. The

mass eigenvalues are then determined by requiring that the coefficient bi vanishes for the

term with αi negative. However, in certain cases with φ−3 , eq. (2.28) yields solutions where

both αi are positive. Specifically for this mode, we have α1 = 6−p−`3 and α2 = `3 +1 and

so for `3 < 6− p, both modes converge at infinity. However, in these cases, supersymmetry

‘selects’ the physical profile as that with `3 + 1, i.e., this choice yields a supersymmetric

spectrum.

2.2.1 Analysis of the spectrum

In the previous subsection, we computed the spectra of bosonic mesons in (p+ 1)-dimen-

sional U(N) SYM coupled to a fundamental hypermultiplet by computing the spectrum of

fluctuations of scalar and gauge fields on the D(p+ 4)-brane worldvolume. Classifying the

massive meson states in representations (j1, j2, j3) of SU(2)R × SU(2)L × SO(4− p), where

j1,2,3 denote the SU(2)R,L and SO(4 − p) spin, the bosonic modes of the D(p + 4)-brane

give rise to the following mesonic states and mass spectra:8

• 4 − p scalars in the ( `32 ,
`3
2 , 1) corresponding to fluctuations transverse to the Dp-

branes, with mass Ms(n, `3), n ≥ 0, `3 ≥ 0;

• 1 scalar in the ( `32 ,
`3
2 , 0) corresponding to transverse fluctuations but parallel to the

separation of the Dp- and D(p+4)-branes, with mass Ms(n, `3), n ≥ 0, `3 ≥ 0;

• 1 vector in the ( `32 ,
`3
2 , 0) corresponding to type 1 gauge fields on the D(p+ 4)-brane,

with mass M1(n, `3) = Ms(n, `3), n ≥ 0, `3 ≥ 0;

• 1 scalar in the ( `32 ,
`3
2 , 0) corresponding to type 2 gauge fields on the D(p+ 4)-brane,

with mass M2(n, `3) = Ms(n, `3), n ≥ 0, `3 ≥ 1;

• 1 scalar in the ( `3−1
2 , `3+1

2 , 0) corresponding to type 3,+ gauge fields on the D(p+ 4)-

brane, with mass M3,+(n, `3) = Ms(n, `3 + 1), n ≥ 0, `3 ≥ 1;

• 1 scalar in the ( `3+1
2 , `3−1

2 , 0) corresponding to type 3,− gauge fields on the D(p+ 4)-

brane, with mass M3,−(n, `3) = Ms(n, `3 − 1), n ≥ 0, `3 ≥ 1.

In summary, the spectra can be related to each other through

Ms(n, `3) = M1(n, `3) = M2(n, `3) = M3,+(n, `3 − 1) = M3,−(n, `3 + 1) . (2.30)

Again, for general p, we were unable to find an analytic solution for the spectrum but the

mass eigenvalues are fixed by a simple ODE (2.18) and may be determined numerically.

An analytic solution was found in [1] for p=3 — see appendix A. Another special case is

p = 1 where analytic radial profiles (written in terms of Bessel functions) can be found

8Keep in mind that the SO(4− p) group only really acts for p ≤ 2.
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for `3 = 0. As advertised in the introduction, all of the masses scale parametrically as

M ∝ mq/geff (mq), where geff(mq) is the running effective coupling (1.1) evaluated at the

quark mass scale.

As noted earlier, the Dp-D(p+4) brane system preserves eight supercharges which cor-

responds to N = 2 supersymmetry in four dimensions. The mesons, as massive representa-

tions of the supersymmetry algebra, should fill out long supermultiplets. The construction

of these supermultiplets for the (p + 1)-dimensional theories with eight supercharges is a

simple extension of that for N = 2 multiplets in the four-dimensional theory, considered

in [1]. The multiplets are constructed by acting with the supercharges Q on a state with

spin `3
2 under SU(2)R which is annihilated by the Q̄’s. Since SU(2)L commutes with the

supercharges, all states in a given supermultiplet will be in the same representation of

SU(2)L. Of course, as dictated by supersymmetry, each multiplet contains an equal num-

ber of bosonic and fermionic components, i.e., 8(`3 + 1) of each. For `3 ≥ 2, the bosonic

contributions to the generic multiplet are: 6 − p real scalars and one vector in the `3
2 of

SU(2)R and two real scalars in the `3
2 ± 1 of SU(2)R. Now the fermions can be represented

as Dirac spinors with two (p = 1, 2) or four (p = 3, 4) components. Hence, for p = 3, 4,

the generic multiplet contains a single Dirac fermion, in each of `3+1
2 and `3−1

2 of SU(2)R.

For p = 1, 2, there are two Dirac fermions in each of the `3+1
2 and `3−1

2 . However, in the

latter case, there is also a nontrivial SO(4 − p) action and these pairs of spinors combine

together in the spin-half representation of this rotation group.9 Exceptional semi-short

supermultiplets appear for `3 = 0, 1. For `3 = 0, the spectrum contains 5 − p scalars and

one vector which are singlets of SU(2)R, one scalar in the 1, and one (p=3,4) or two (p=1,2)

Dirac fermions in the 1
2 . For `3 = 1, there are 6 − p scalars and one vector in the 1

2 , one

scalar in the 3
2 and one (p=3,4) or two (p=1,2) Dirac fermions in each of the 0 and 1.

In each of the cases above, the bosonic content is, of course, identical to that found using

supergravity. Hence supersymmetry allows us to extend the computed bosonic spectrum

to include fermions. First we have for p = 1, 2

• 1 fermion in the ( `3+1
2 , `32 ,

1
2) with mass Mf,1(n, `3) = Ms(n, `3), n ≥ 0, `3 ≥ 0;

• 1 fermion in the ( `32 ,
`3−1

2 , 1
2) with mass Mf,2(n, `3) = Ms(n, `3 + 1), n ≥ 0, `3 ≥ 0.

Keeping in mind that the spinor representations are twice as large for p = 3, 4, we can keep

the classification as above except for dropping j3 as there is no SO(4− p).

2.2.2 Meson spectrum for p = 2

As a specific example, let us consider the case p = 2 in which the background geometry is

induced by N coincident D2-branes and there is one D6-brane probe embedded a distance

L in the 789-directions:
0 1 2 3 4 5 6 7 8 9

D2 × × ×
D6 × × × × × × ×

(2.31)

9These considerations may be extended to p = 0, where the dual theory is supersymmetric matrix

quantum mechanics coupled to degrees of freedom in the fundamental representation. The latter include

four fermionic variables, which are organized as a spinor of the SO(4) symmetry.
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n

0 1 2 3 4 5

0 11.34 36.53 75.49 128.19 194.65 274.86

`3 1 33.39 70.37 121.01 185.36 263.41 355.20

2 66.20 114.96 177.33 253.36 343.08 446.49

3 109.75 170.30 244.43 332.17 433.57 548.65

Table 1: The mesonic spectrum in terms of M̄2
s (n, `3) corresponding to a configuration a D6-brane

probe in the D2-brane geometry. Each mass eigenvalue is labelled by the quantum numbers `3 and

n (where n represents the number of nodes in the φ(ρ) function).

The radial differential equation (2.18) (for scalar fluctuations of the D6-brane) is

∂2
ρφ(%) +

3

%
∂%φ(%) +

(
M̄2

(1 + %2)5/2
− `3(`3 + 2)

%2

)
φ(%) = 0 (2.32)

which can be solved using the shooting method. For either %→ 0 or %→∞, the solution

has the form φ(%) = A%`3 + B%−`3−2. Using the boundary condition φ(% → 0) = %`3 , we

solved (2.32) numerically. As the solutions to (2.32) must be regular for all values of %,

we tuned the constant M̄ to obtain the regular solutions, which behave as φ = %−`3−2 for

% → ∞. In this way, the three-dimensional mass spectrum of scalar mesons was found to

be

M2 =
4π

3
M̄2 m3

q

g2
YMN

, (2.33)

where the values of M̄s(n, `3) are given in table 1. As noted earlier, the eigenvalues for

the type 1 and 2 gauge fields are identical to those for the scalar modes and hence their

spectrum is also given by (2.33). For the type 3 gauge field modes, we solved (2.28) using

the shooting method and found eigenvalues identical to those in table 1 but with the `3

label shifted as indicated in eq. (2.30), i.e., M3,±(n, `3) = Ms(n, `3 ± 1), `3 ≥ 1.

2.3 Meson spectrum in Dp-D(p+ 2)

Consider the following configuration of N coincident Dp-branes (1 ≤ p < 5) and one

D(p+ 2)-brane probe, embedded a distance L from the Dp-branes:

0 1 · · · p− 1 p p+ 1 p+ 2 p+ 3 p+ 4 · · · 9

Dp × × · · · × ×
D(p+ 2) × × · · · × × × ×

(2.34)

The holographic duality for such a system with p = 3 was first considered in [17]. As

before, this orientation of branes was chosen to produce a supersymmetric system which

is in static equilibrium. Inserting the D(p+ 2)-brane breaks the SO(1, p) symmetry of the

01 · · · p-directions to SO(1, p−1) acting on 01 · · · (p−1). Similarly the SO(9−p) symmetry

of the space transverse to the Dp-branes is reduced to SO(3) = SU(2)R acting on Y 1Y 2Y 3

and, for L 6= 0, SO(5− p) acting on Y 4 · · · Y 8−p. The R-symmetry group for fields on the
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D(p+ 2)-brane is SU(2)R. The induced metric on the D(p+ 2)-brane is

ds2 =

(√
ρ2 + L2

rp

) 7−p
2

ds2(E(1,p−1)) +

(
rp√

ρ2 + L2

) 7−p
2

(dρ2 + ρ2dΩ2
2) (2.35)

where, as usual, we have introduced spherical polar coordinates (with radial coordinate ρ)

in the probe brane worldvolume directions orthogonal to the background Dp-branes.

The dual gauge theory is (p + 1)-dimensional, but the fundamental hypermultiplet

has been introduced on a p-dimensional surface. Hence the matter fields are localized

on a codimension-one defect [17], e.g., xp = 0. The theory again has eight conserved

supercharges and the quark mass is still given by (2.9). Together the rotation symmetries

above, i.e., SU(2)R × SO(5− p), form the R-symmetry group of the gauge theory.

We follow the same procedure described for the Dp-D(p + 4) system to compute the

spectrum of mesons corresponding to fluctuations of the D(p + 2)-brane. In this case,

however, the D(p+ 2)-brane can fluctuate in the Xp-direction, parallel to the background

branes, as well as in the Y 4 · · · Y 9−p-directions, transverse to the background Dp-branes.

We take χA (A = 4, . . . , 9−p) and ψ as the fluctuations in directions transverse and parallel

to the background Dp-branes, respectively:

Y A = δA9−p L+ 2πα′χA, A = 4, . . . , 9− p (2.36)

Xp = 2πα′ψ. (2.37)

As with the Dp-D(p+4)-brane configuration, the relevant action for the D(p+2)-brane

fields is the DBI action (2.11) combined with the Wess-Zumino term involving C(p+1):

S = SDBI − 2πα′τp+2

∫
P [C(p+1)] ∧ F . (2.38)

In this case, the Wess-Zumino term produces a coupling between the gauge fields and the

scalar ψ.

Considering first the fluctuations χA in directions orthogonal to the background branes,

the relevant quadratic Lagrangian density is

L = −(2πα′)2

2
τp+2e

−φ√−det gab

(rp
r

) 7−p
2
gcd∂cχ

A∂dχ
A (2.39)

where summation over A = 4, . . . , 9 − p is implied. Here we have dropped the ‘constant’

term proportional to the determinant of the induced metric gab and the dilaton, since it is

again independent of the fluctuations. Now in an expansion to quadratic order the entire

pre-factor in eq. (2.39) can be treated as though it is independent of χA. In particular, we

can take gab to be given by (2.35).

As each of the χA fluctuations appears on equal footing in the Lagrangian (2.39), the

superscript is dropped in the following. Now we expand the modes as

χ = φ⊥(ρ) eik·x Y`2(S2) , (2.40)

– 13 –



J
H
E
P
0
9
(
2
0
0
6
)
0
6
6

where eik·x is a plane wave in the 0, 1, . . . , p− 1 space and Y `2(S2) are spherical harmonics

on an S2 of unit radius (`2 = 0, 1, 2, . . .). With % and M̄ as defined in (2.17), the equation

determining the radial profile is

∂2
%φ⊥(%) +

2

%
∂%φ⊥(%) +

(
M̄2

(1 + %2)(7−p)/2 −
`2(`2 + 1)

%2

)
φ⊥(%) = 0. (2.41)

As discussed in section 2.2, the solutions corresponding to physical mesons are real, regular

at the origin and convergent asymptotically. Analytic solutions to this equation for p = 3

(in terms of hypergeometric functions) are given in appendix A.10 For p = 1, 2, 4, we solved

(2.41) numerically (using the shooting method) to determine the mass eigenvalues. As in

the previous section then, for 1 ≤ p ≤ 4, the spectrum of mesons (here confined to a (p–1)-

dimensonal defect) is given by (2.19) with the dimensionless eigenvalues M̄ = M̄⊥(n, `2)

computed from (2.41), where n is the number of nodes of the φ⊥(ρ) function.

The relevant Lagrangian density for fluctuations of the gauge fields and ψ, the fluctu-

ation of the D(p+ 2)-brane along the Xp direction, follows from (2.38) as

L = −(2πα′)2τp+2

[
e−φ
√
−det gab

(
1

2

(
r

rp

) 7−p
2

∂cψ∂dψ +
1

4
FcdF

cd

)

−
(
r

rp

)7−p
(Fθϕ∂ρψ + Fϕρ∂θψ + Fρθ∂ϕψ)

]
, (2.42)

where ρ, θ, ϕ are spherical polar coordinates in the Y 1Y 2Y 3-space. To quadratic order, the

equations of motion are

∂a

[
ρ2
√

deth

(
r

rp

) 7−p
2

gab∂bψ

]
− (7− p)ρr

5−p

r7−p
p

εij∇[2]iAj = 0 (2.43)

∂a

(
ρ2
√

dethF ab
)
− (7− p)ρr

5−p

r7−p
p

εbj∂iψ = 0 (2.44)

where we are using the index notation given in footnote 5. Also hij and εij are the metric

and antisymmetric tensor density on the unit two-sphere, respectively. Note that εθϕ = 1.

The second term in each equation results from the Wess-Zumino term and in (2.44) this

term is only present if b is an index on the S2.

We can expand the scalar and gauge fields in terms of spherical harmonics on the two-

sphere component of the D(p+ 2)-brane: Aµ, Aρ, ψ in terms of scalar spherical harmonics

and Ai, in terms of vector spherical harmonics. Note that the equations of motion (2.43)

and (2.44) imply that the scalar field ψ couples only to the Ai gauge field modes. Thus,

working in the gauge ∂µAµ = 0, we can define one type of mode not coupled to ψ as

Type 1: Aµ = ξµφ1(ρ)eik·xY`2(S2) , ξ · k = 0 , Aρ = 0 , Ai = 0 . (2.45)

10Eq. (2.41) also becomes a hypergeometric equation for p = 5 but there are no solutions satisfying all of

the necessary criteria.
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For ψ = 0, there is a second type of mode given by

Type 2: Aµ = 0 , Aρ = φ2(ρ)eik·xY`2(S2) , Ai = φ̃2(ρ)eik·x∇[2]iY`2(S2) . (2.46)

Finally, there is a third type of gauge field mode which is coupled to ψ for `2 ≥ 1:

Type 3: Aµ = 0 , Aρ = 0 , Ai = φ3(ρ)eik·x
√

dethεij∇i[2]Y`2(S2) , (2.47)

where the factor
√

det h makes up for the density weight of the two-dimensional ε-symbol.

We now proceed to compute the spectra for each type of mode. For type 1 modes, the

equation of motion is (2.44) with b = µ. Substituting (2.45) and making the redefinitions

(2.17), we obtain

∂2
%φ1(%) +

2

%
∂%φ1(%) +

(
M̄2

(1 + %2)
7−p

2

− `2(`2 + 1)

%2

)
φ1(%) = 0. (2.48)

Note that this result is identical to eq. (2.41), the differential equation for the scalar fluc-

tuations transverse to the background branes. Thus, the mass spectrum M̄ = M̄1(n, `2)

here will be identical to that for the transverse scalars.

For the type 2 gauge fields and ψ = 0, (2.43) is identically satisfied. Note that for

`2 = 0, Ai = 0. Then (2.44) with b = µ yields φ2 ∼ ρ−2. As the latter is not regular at the

origin, the only solution for `2 = 0 is trivial (i.e., φ2 = 0) and we need only consider `2 ≥ 1

for these modes.

For `2 ≥ 1, (2.44) with b = µ gives ∂ρ(ρ
2φ2) = `2(`2 + 1)φ̃2. With this, the equations

obtained from (2.44) with b = ρ and b = i are equivalent and give, with the definitions as

in eq. (2.17),

∂2
%φ2(%) +

4

%
∂%φ2(%) +

(
M̄2

(1 + %2)
7−p

2

+
2− `2(`2 + 1)

%2

)
φ2(%) = 0 , (2.49)

which defines the mass spectrum which we denote as M̄2
2 (n, `2), `2 ≥ 1. Putting φ̂2 = %φ2,

this equation becomes the ODE (2.41) and thus the spectrum is again identical to that for

the transverse scalars and type 1 gauge fields: M2(n, `2) = M⊥(n, `2) = M1(n, `2).

As noted above, the type 3 gauge field modes are coupled to the scalar field ψ which

represents fluctuations of the probe brane along theX p direction, parallel to the background

Dp-branes. The mode `2 = 0 is an exception since the gauge field vanishes: Ai = 0. Then,

with ψ = eik·xφ||(ρ) and the redefinitions (2.17), eq. (2.43) yields

∂2
%φ||(%) +

(
2

%
+

(7− p)%
1 + %2

)
∂%φ||(%) +

M̄2

(1 + %2)
7−p

2

φ||(%) = 0. (2.50)

Solving this equation and imposing regularity requirements yields the spectrum of mesons

M||(n, 0) = M⊥(n, 1).

For `2 ≥ 1, we proceed via separation of variables, expanding the scalar field as ψ =

eik·xφ||(ρ)Y`2(S2) and using (2.47) for the gauge field, so that (2.43) becomes

(rp
r

)7−p
M2φ||(ρ)+

1

ρ2r7−p∂ρ
(
ρ2r7−p∂ρφ||(ρ)

)
− `2(`2 + 1)

ρ2

(
φ||(ρ) + (7− p) ρ

r2
φ3(ρ)

)
= 0 ,

(2.51)
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while (2.44) with b = i gives

(rp
r

)7−p
M2φ3(ρ) +

1

r7−p∂ρ
(
r7−p∂ρφ3(ρ)

)
− `2(`2 + 1)

ρ2

(
φ3(ρ) + (7− p)ρ

3

r2
φ||(ρ)

)
= 0 .

(2.52)

In both of these equations, r =
√
ρ2 + L2. We diagonalize this system of equations by

defining two new radial functions φ̃+(ρ) , φ̃−(ρ) as

φ̃+(ρ) = `2φ3(ρ) + ρφ||(ρ) , φ̃−(ρ) = (`2 + 1)φ3(ρ)− ρφ||(ρ) . (2.53)

With these new functions and also the definitions (2.17), (2.51) and (2.52), the decoupled

equations become

∂2
% φ̃+(%) + (7−p)%

1+%2 ∂%φ̃+(%) +

(
M̄2

(1+%2)
7−p

2

− `2(`2+1)
%2 − (7− p) (`2+1)

1+%2

)
φ̃+(%) = 0

∂2
% φ̃−(%) + (7−p)%

1+%2 ∂%φ̃−(%) +

(
M̄2

(1+%2)
7−p

2

− `2(`2+1)
%2 + (7− p) `2

1+%2

)
φ̃−(%) = 0 .

(2.54)

As usual, by solving these equations and imposing regularity requirements, the eigenvalues

M̄ are found for 1 ≤ p ≤ 4 (while for p = 5 there are no normalizable modes).11 We

denote the eigenvalues for φ̃+(ρ) and φ̃−(ρ) respectively as M̄+(n, `2) and M̄−(n, `2). The

spectrum of mesons corresponding to fluctuations of the D(p+ 2)-brane in the p-direction

and fluctuations of the gauge fields is then given by (2.19) with these values of M̄2 and

these can be related to the spectrum of scalar fluctuations transverse to the background

branes via M±(n, `2) = M⊥(n, `2 ± 1), `2 ≥ 1. Again, the spectra are only evaluated

numerically in general, however, this matching of the spectra is established analytically by

mapping eq. (2.41) to eq. (2.54). One finds that the φ̃± modes are related to the φ⊥ modes

as follows:

φ̃−,`2=L = %L∂%
[
%1−Lφ⊥,`2=L−1

]
(2.55)

φ̃+,`2=L = %−L−1∂%
[
%L+2φ⊥,`2=L+1

]
.

In computing the spectra of fluctuations of scalar and gauge fields on the D(p + 2)-

brane worldvolume, we have found the spectra of mesons living on a codimension-one defect

in the (p+ 1)-dimensional super-Yang-Mills theory. From the supergravity computations,

there are 6−p scalar mesons corresponding to transverse fluctuations of the Dp-branes with

mass M⊥, one vector meson corresponding to type 1 gauge fields with mass M1, one scalar

meson corresponding to type 2 gauge fields with mass M2, and two scalars, corresponding

to the φ̃± modes with masses M±. The spectra for these different modes are simply related

with

M̄2
⊥(n, `2) = M̄2

1 (n, `2) = M̄2
2 (n, `2) = M̄2

+(n, `2 − 1) = M̄2
−(n, `2 + 1) . (2.56)

11Here again, one finds a subtlety for the φ̃− profiles. In the limit % → ∞, the solutions behave like

φ̃(%) = b1%
−α1 + b2%

−α2 where α1 = 6− p− `2 and α2 = `2. Hence both αi are positive for `2 < 6− p and

both modes converge at infinity. Hence, in these cases, we still determine the physical masses by demanding

that b1 vanish, which yields a supersymmetric spectrum.
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As with the Dp-D(p+4) brane configuration, we were unable to find an analytic solution for

the spectrum for general p. However, the mass eigenvalues are fixed by the ODE (2.41) and

can be easily computed using numerical techniques. The notable exception is the case p = 3

for which solutions were found in terms of hypergeometric functions — see appendix A.

Hence while the precise numbers change, the masses scale as M ∝ mq/geff (mq), which is

identical to the scaling found in the Dp-D(p+ 4) brane system.

As discussed in section 2.2.1, the mesons should fill massive supermultiplets. Counting

the bosonic contributions found using supergravity, we see that each multiplet contains

eight bosonic degrees of freedom, as expected from the dual gauge theory.

2.4 Meson spectrum in Dp-Dp

Consider the following configuration of N coincident Dp-branes (2 ≤ p < 5) and one

Dp-brane probe, in which the probe brane is a distance L from the background branes:

0 1 · · · p− 2 p− 1 p p+ 1 p+ 2 p+ 3 · · · 9

background × × · · · × × ×
probe × × · · · × × ×

(2.57)

The holographic duality for the case above with p = 3 was extensively studied in [18].

The orientation of D-branes was again chosen to preserve supersymmetry and the branes

are in static equilibrium. Embedding the probe brane in this way reduces the number of

supercharges from sixteen to eight. Correspondingly, the isometry groups of the background

geometry (2.5) are broken. The SO(1, p) symmetry of the 01 · · · p-directions has been

reduced to SO(1, p−2)×SO(2). Further the SO(9−p) symmetry corresponding to rotations

in the Y 1 · · · Y 9−p-directions is broken to SO(2)′ acting in the (p+ 1, p+ 2)-plane and for

L 6= 0, SO(6−p) acting in the remaining transverse directions orthogonal to the separation

of the branes. The induced metric gab on the probe brane is

ds2 =

(√
ρ2 + L2

rp

) 7−p
2

ds2(E(1,p−2)) +

(
rp√

ρ2 + L2

) 7−p
2 (

dρ2 + ρ2dθ2
)
, (2.58)

where, as usual, we are using polar coordinates ρ, θ in the probe brane worldvolume direc-

tions transverse to the background Dp-branes.

The dual description is (p+1)-dimensional super-Yang-Mills coupled to a fundamental

hypermultiplet confined to a (p− 1)-dimensional surface. That is, the matter fields live on

a codimension-two defect [18]. The quark mass (2.9) again corresponds to the mass of a

fundamental string stretching between the background branes and the probe brane. The

theory has eight conserved supercharges and the R-symmetry group has two components:

the SO(6− p) rotations and the diagonal rotations in SO(2)× SO(2)′.
For this brane configuration, the fluctuations of the probe brane fall into two classes:

those orthogonal and parallel to the background branes. We write the fluctuations around

the fiducial embedding as

Y A = δA9−pL+ 2πα′χA, A = 3, . . . , 9− p ; (2.59)

XB = 2πα′ψB , B = p− 1, p . (2.60)
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The action defining the dynamics of the Dp-brane probe is given by the DBI action (2.11)

plus the Wess-Zumino term with C(p+1):

S = SDBI − τp
∫
P [C(p+1)] . (2.61)

For the ‘orthogonal’ fluctuations, the quadratic Lagrangian density is

L = −(2πα′)2

2
τpe
−φ√−det gab

(rp
r

) 7−p
2
gcd∂cχ

A∂dχ
A (2.62)

where summation over A is implied and r2 = L2 +ρ2. As before, the quadratic Lagrangian

depends only on the derivatives of χA. Taking χ to be any one of the χA, we expand the

modes as

χ = φ⊥(ρ) eik·xei`θ , (2.63)

where eik·x is a plane wave in the (0, 1, . . . , p−2)-space and ` = 0,±1,±2, . . .. The equation

of motion reduces to determining the radial profile φ⊥(%):

∂2
%φ⊥(%) +

1

%
∂%φ⊥(%) +

(
M̄2

(1 + %2)(7−p)/2 −
`2

%2

)
φ⊥(%) = 0 (2.64)

where we use the definitions (2.17). The solutions with ` = 0 are not normalizable and

so we restrict to ` nonzero. Since the equation above is symmetric in `, modes with the

same absolute value of ` have the same mass. For p = 3 analytic solutions in terms

of hypergeometric functions are given in appendix A while for p = 2, 4 solutions were

found numerically.12 Thus, for 2 ≤ p ≤ 4, the spectrum of mesons living on the (p −
1)-dimensional defect is given by (2.19) with M̄ = M̄⊥(n, |`|) (` 6= 0) computed from

eq. (2.64).

We now turn to the ‘parallel’ fluctuations ψp−1, ψp. In this case, the Wess-Zumino

term introduces a coupling between these two fields. The quadratic Lagrangian density

following from eq. (2.61) is

L = −(2πα′)2

2
τp

[
ρ

(
r

rp

) 7−p
2

gcd∂cψ
B∂dψ

B −
(
r

rp

)7−p
(∂ρψ

p−1∂θψ
p − ∂ρψp∂θψp−1)

]

(2.65)

where r2 = L2 + ρ2 again. The ψp−1, ψp mixing can be diagonalized by working with

the field Ψ = ψp−1 + iψp and its complex conjugate Ψ∗ = ψp−1 − iψp, in terms of which

eq. (2.65) becomes

L = (πα′)2τp

[
−2ρ

(
r

rp

) 7−p
2

gcd∂cΨ∂dΨ
∗ − i

(
r

rp

)7−p
(∂ρΨ

∗∂θΨ− ∂ρΨ∂θΨ∗)
]
, (2.66)

and the resulting equation of motion is

∂a

[
ρ

(
r

rp

) 7−p
2

gab∂bΨ

]
− (7− p)

2i
ρ
r5−p

r7−p
p

∂θΨ = 0 . (2.67)

12Here and for the remaining modes, one finds there are no normalizable modes for p = 5.
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Proceeding via separation of variables, we expand the field as Ψ = φ||(ρ) eik·xei`θ and

eq. (2.67) reduces to

∂2
%φ||(%) +

(
1

%
+

(7− p)%
1 + %2

)
∂%φ||(%) +

(
M̄2

(1 + %2)
7−p

2

− `2

%2
− (7− p)`

1 + %2

)
φ||(%) = 0 , (2.68)

where we have substituted in the definitions (2.17). As before, we found analytic solutions

for p = 3 (see appendix A) and numerical solutions for p = 2, 4.

As seen in previous sections, there is a mapping from eq. (2.64) to eq. (2.68). One

finds that the φ|| modes can be related to the ‘orthogonal’ modes via

φ||,`=L = %−L−1∂%
[
%L+1φ⊥,|`|=L+1

]
, L ≥ 0 (2.69)

φ||,`=−L = %L−1∂%
[
%1−Lφ⊥,|`|=L−1

]
, L ≥ 2 .

Hence the spectra can be matched analytically, even if they are only evaluated numerically.

We denote the spectra M̄2
±(n, |`|) for ` ≥ 0 and ` ≤ −2, respectively. Thus it follows from

eq. (2.69) that M̄+(n, `) = M̄⊥(n, |`|+ 1) and M̄−(n, `) = M̄⊥(n, |`| − 1). Note that there

is a subtlety here in that there is no mapping for L = −1 — we return to this point

below.

The spectrum for Ψ∗ is obtained by noting that the radial ODE for this field is iden-

tical to eq. (2.68) with the replacement ` → −`. Hence for Ψ∗, we have: M̄∗,+(n, `) =

M̄−(n,−`) = M̄⊥(n, |`|− 1) with ` ≥ 2; and M̄∗,−(n, `) = M̄+(n,−`) = M̄⊥(n, |`|+ 1) with

` ≤ 0.

Finally, we turn to computing the spectrum for gauge field fluctuations. The linearized

equation of motion comes entirely from the DBI part of the action (2.61) and is

∂a(e
−φ√−det gcdF

ab) = ∂a(ρF
ab) = 0 . (2.70)

Following the earlier analysis, we find that there are two types of modes:

Type 1: Aµ = ζµφ1(ρ)eik·xei`θ, k · ζ = 0, Aρ = 0, Aθ = 0 (2.71)

Type 2: Aµ = 0, Aρ = φ2(ρ)eik·xei`θ, Aθ = φ̃2(ρ)eik·xei`θ (2.72)

where ` = 0,±1,±2, . . ..

For type 1 modes, eq. (2.70) with b = µ gives

∂2
%φ1(%) +

1

%
∂%φ1(%) +

(
M̄2

(1 + %2)
7−p

2

− `2

%2

)
φ1(%) = 0 , (2.73)

where we have used the redefinitions (2.17). This equation is identical to that for the

transverse scalars (2.64) and thus the type 1 gauge fields will have the same spectrum as

those scalar modes: M̄1(n, |`|) = M̄⊥(n, |`|), ` 6= 0.

For modes of type 2, eq. (2.70) with b = µ gives

ρ∂ρ(ρφ2) = −i` φ̃2. (2.74)
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There is no regular solution for ` = 0 and we only consider ` 6= 0 in the following analysis.

In this case, using (2.74), the equations resulting from (2.70) with b = ρ and b = θ are

equivalent and, using eq. (2.17), give

∂2
%φ2(%) +

3

%
∂%φ2(%) +

(
M̄2

(1 + %2)
7−p

2

− `2 − 1

%2

)
φ2(%) = 0 . (2.75)

As usual, for 2 ≤ p ≤ 4, the spectrum of these fluctuations follows from solving for

M̄ = M̄2(n, `) and using (2.19). These can be matched with the spectrum of ‘orthogo-

nal’ fluctuations with M̄2(n, |`|) = M̄⊥(n, |`|) for ` 6= 0. The latter follows since upon

substituting φ2 = ψ/%, eq. (2.75) reduces to eq. (2.64).

We now return to a subtlety that arose for the parallel fluctuations. Recall that

eq. (2.69) allowed us to analytically match the spectrum of these modes with that for

fluctuations in the other fields with the exception of ` = −1. Formally the mapping (2.69)

relates φ||,`=−1 to a solution of eq. (2.64) with ` = 0, however, there are no normalizable

solutions of the latter equation when ` = 0. Naively then it seems that supersymmetry

would dictate that the ` = −1 solutions of eq. (2.68) are unphysical. Let us pursue this

point by considering the φ||,`=−1 modes in more detail. In the limit that % → ∞, the

solutions of eq. (2.68) with ` = −1 decay as

φ||(%) = A%−1 +B%−6+p . (2.76)

Recall that we are considering p = 2, 3, 4 here and so either choice would potentially give a

tower of normalizable modes. This is a situation which we have already addressed in other

cases (see, e.g., footnote 11) and supersymmetry of the spectrum was used to select the

physical modes. If one examines the spectrum numerically for, e.g., the D2/D2 system, one

finds that neither choice yields masses that match those of the other fluctuations. Hence

this seems to confirm that supersymmetry rules out the φ||,`=−1 modes.

One interesting result is that eq. (2.68) has the following massless solution for ` = −1:

φ||,`=−1 =
1

%

(
1− 1

(1 + %2)(5−p)/2

)
. (2.77)

This mode was constructed to be regular at % = 0 as well as normalizable (i.e., asymptoti-

cally it decays as %−6+p). Another simple solution of eq. (2.68) with ` = −1 and M̄2 = 0

is φ|| = 1/%. While this solution is normalizable, it is singular at % = 0 and hence it is not

a candidate for a mesonic excitation. However, it still has an interesting interpretation, as

noted in [13, 18] for p = 3. The full solution can be written as Φ = c/(%eiθ) or

Xp−1 + iXp =
c′

Xp+1 + iXp+2
(2.78)

This solution describes the supersymmetric intersection of the Dp-probe with a second

probe Dp-brane, parallel to the background branes and positioned at X 9 = L. Supersym-

metry is preserved in eq. (2.78) as it gives a smooth resolution of the intersection on a

holomorphic curve. Hence the massless solution (2.77) is related to the existence of these
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supersymmetric solutions. The authors of [13] argue that the massless excitations should

be a part of physical spectrum as they may be related to quantum vacuum spreading over

the classical Higgs branch [18]. However, we have explicitly identified a massless mode

(2.77) for all values of p, including p = 4. In the latter case, the defect supports a (2+1)-

dimensional theory of fundamental fields for which this ‘quantum spreading’ would not

occur. Hence this argument for retaining the massless mode fails for p = 4. While this

observation does not immediately rule out their argument for the lower dimensional cases,

we think it would be strange that the same treatment does not apply uniformly to all cases.

We also observe that the present analysis only applies for L 6= 0 whereas [18] considered

the case of vanishing quark mass. As noted above, with a finite quark mass (finite L),

one must really introduce a second probe brane for the holomorphic intersection (2.78) to

make sense. Without such a brane then, a finite quark mass (which destroys the conformal

invariance central to the analysis of [18]) should prevent the quantum spreading of the

vacuum. Hence in the absence of a second probe brane, we conclude that we should not

retain any of the φ||,`=−1 modes in the physical spectrum.

Thus, the spectrum of mesons in (p + 1)-dimensional (2 ≤ p ≤ 4) SYM coupled to a

fundamental hypermultiplet confined to a codimension-two defect is discrete with mass gap

M ∼ mq/geff . There are (7−p) scalar mesons corresponding to the ‘orthogonal’ fluctuations

of the probe, two corresponding to ‘parallel’ fluctuations, one vector corresponding to type

1 gauge fields, and one scalar corresponding to type 2 gauge fields. The spectra of all of

these are related via:

M⊥(n, |`|) = M1(n, |`|) = M2(n, |`|) = M−(n, |`|+ 1) = M+(n, `− 1)

= M∗,+(n, `+ 1) = M∗,−(n, |`| − 1) . (2.79)

As usual, the mesons organize themselves into massive supermultiplets and the masses of

the fermionic mesons match those of the bosonic modes determined here.

Again we have found that the meson masses scale as M ∝ mq/geff (mq), which is

identical to the scaling found in the previous two cases. Examining the meson spectra of

the various brane configurations in more detail, we note that they are related as the radial

equations for each different probe can be mapped into one another. Eq. (2.64) for the

Dp-Dp brane system reduces to eq. (2.18) for the Dp-D(p + 4) system upon substituting:

φ⊥(%;n, `) = %φ(%;n, `3 = |`|−1). Hence the mass levels for these two systems are identical,

although the degeneracies will differ in the two cases. Similarly, eq. (2.41) for the Dp-D(p+

2) system maps to eq. (2.18) for the Dp-D(p+ 4) system upon substituting: φ⊥(%;n, `2) =√
%φ
(
%;n, `3 = `2 − 1

2

)
. Of course, this is only a formal identification because the spectra

in each case are only evaluated for integer values of the angular quantum numbers `2,3.

Hence the physical spectra differ for these two systems.

3. Beyond 10D supergravity: an example

It is well understood that, with the exception of p = 3, the supergravity regime discussed

above is only applicable for a well-defined intermediate regime of energy scales [4]. From
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Figure 1: Descriptions of the D2-brane theory for different energy regimes in the field theory, set

by the quark mass mq .

the results of section 2, the meson spectra clearly focus on a very precise energy scale in

the field theory, namely, the quark mass. Thus, to study meson spectra in gauge theories

in the infrared (IR) or ultraviolet (UV) regimes with this holographic framework, one must

venture beyond ten-dimensional supergravity.

In this section we consider on the meson spectra beyond this supergravity regime for

the specific example of the D2-brane background, in which we introduce D4- and D2-

brane probes. The corresponding field theory is three-dimensional U(N) super-Yang-Mills

(SYM) coupled to a fundamental hypermultiplet on a codimension-one or -two defect

(for the D4- and D2-probes, respectively) with eight supercharges. For this theory, the

Yang-Mills coupling constant and the dimensionless effective coupling constant are given

by [4]

g2
YM =

gs√
α′
, g2

eff(mq) =
g2

YMN

mq
. (3.1)

The meson spectrum for the D2-brane theory has different descriptions depending on

the energy scale mq [4], as shown in figure 1. Perturbative SYM is valid for geff ¿ 1

which corresponds to the UV regime or very large values of mq. The type IIA supergravity

description takes over in the regime 1 < geff < N2/5, where both the curvature and string

coupling of the gravity background are small. Once geff > N2/5, the string coupling

becomes large and an eleven-dimensional supergravity description is required. Thus, in

the far infrared, the gravity theory is strongly coupled type IIA supergravity which lifts to

M-theory as an M2-brane background.

The choice of background here was motivated by the desire to compare our results

to those of ref. [12]. There an extension of the gauge/gravity duality beyond the probe

approximation with a large number of fundamental fields was discussed for a system of D2-

and D6-branes. Their results seem to indicate that the meson mass is directly proportional

to the quark mass, M ∝ mq. In contrast, our results in section 2.2.2 gave M ∝ m
3/2
q .

These disparate scalings are reconciled by noting that the results of [12] actually only

apply in the far infrared regime, where the dual description is in terms of the M2-brane

throat rather than the D2 background. We study the theory with D4- and D2-brane probes

instead of D6-branes, because it is easy to follow the physics of the former probes from the

ten-dimensional regime to the eleven-dimensional phase where the latter lift to M5- and

M2-brane probes, respectively. Our results in the previous sections indicate that the mass

gap in meson spectra of these different theories should all scale in the same way.
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3.1 Strong coupling: M2-branes with M5- and M2-probes

With p = 2, eq. (2.1) shows that the dilaton diverges as r → 0 and so in the far infrared

the system becomes strongly coupled. As discussed above, the type IIA theory is lifted

to M-theory in this regime. In this case, the array of D2- and D4-branes in (2.34) or of

D2-branes in (2.57) would be lifted to a system of N coincident M2-branes with an M5- or

M2-brane probe, as indicated below:

0 1 2 3 4 5 6 7 8 9 11

M2 × × ×
M5 × × × × × ×

(probe) M2 × × ×

(3.2)

The type IIA background solution (2.1) is readily lifted to eleven dimensions as (see,

for example, [15] and references therein)

ds2 = f−2/3(−dt2 + dx2
1 + dx2

2) + f1/3(dr2 + r2dΩ2
6 + dx2

11) (3.3)

A012 = f−1 (3.4)

where r is a radial coordinate in the 3456789-space and x11 is the compact coordinate

in the eleventh dimension with x11 ∼ x11 + 2πR11. Also f = f(r, x11) is, in general, a

harmonic function of all of the transverse coordinates. Lifting the type IIA solution (2.5)

with p = 2 does not yield exactly the M2-brane solution but rather the solution for a set

of M2-branes smeared over the circle direction. However, we need to consider the solution

for N coincident M2-branes localized at a point on the x11-circle. (Of course, even more

complicated solutions can also be constructed.) In this case, the harmonic function is given

by [5]

f(r, x11) =

∞∑

n=−∞

25π2`p
6N

[r2 + (x2
11 + 2πnR11)2]3

. (3.5)

The summation can be carried out to yield a closed-form result — see appendix B — but

this expression is not very illuminating for the following.

For the fluctuation analysis, we focus on the limits r À R11 and r, x11 ¿ R11, in

which the harmonic function (3.5) simplifies considerably. In the large r limit, r À R11,

the dependence on x11 drops out leaving:

f(r) =
6π2`p

6N

R11

1

r5
. (3.6)

In the following, we refer to this as the “uplifted D2-brane” solution because this corre-

sponds to precisely the eleven-dimensional lift of eq. (2.5) with p = 2. Near the core of the

M2-branes (r, x11 ¿ R11), the harmonic function reduces to

f(r, x11) =
25π2`p

6N

(r2 + x2
11)3

. (3.7)

The metric (3.3) with this harmonic function gives the near-horizon geometry for N coin-

cident M2-branes, i.e., AdS4 × S7 with N units of flux. We will refer to this as the “near

core” solution.
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In the configuration (3.2), we embed the probe branes at a distance L from the back-

ground M2-branes in, say, the X9-direction. As the system is supersymmetric, there is

no potential for either of the probe branes and they are in static equilibrium. Working

in the static gauge, we consider small fluctuations in the 6789-directions transverse to the

background M2-branes

XA = δA9 L+ 2πα′ χA , A = 6, 7, 8, 9 (3.8)

which are overall transverse directions for either probe brane. For the D2-brane probe,

the x11-fluctuations would also fall into this class.13 For these scalar fields, the relevant

probe-brane action is just the DBI-action for M5-branes [19]

SM5 = −τM5

∫
d6ξ
√
−detP [G]ab , (3.9)

or for M2-branes (see, e.g., [20])

SM2 = −τM2

∫
d3ξ
√
−detP [G]ab . (3.10)

In both cases, P [G]ab denotes the pull-back of the 11-dimensional spacetime metric (3.3)

to the probe-brane worldvolume. The brane tensions are: τM5 = (2π)−5`p
−6 and τM2 =

(2π)−2`p
−3 (see, e.g., [15]). Proceeding as in the ten-dimensional analysis above, we expand

these actions to quadratic order in the fluctuations to obtain the Lagrangian density

L ' −
√
−det gab

[
1 +

(2πα′)2

2
f1/3gcd∂cχ

A∂dχ
A

]
, (3.11)

where a sum over A is implicit and gab is the induced metric on the probe-brane:

M5 : ds2(g) = f−2/3(−dt2 + dx2
1) + f1/3(dρ2 + ρ2dΩ2

2 + dx2
11) , (3.12)

M2 : ds2(g) = −f−2/3dt2 + f1/3(dρ2 + ρ2dθ2) . (3.13)

The induced metric factorizes such that its determinant is independent of the fluc-

tuations. Furthermore, retaining terms only to quadratic order in the fluctuations, any

dependence on the fluctuations can be dropped from the factor f 1/3gcd in (3.11). Hence

once again, the quadratic Lagrangian reduces to a simple free scalar theory in a curved

background. The equation of motion for any one of the fluctuations χA (A = 6, 7, 8, 9)

then follows from (3.11) as

∂c

[√
−det gabf

1/3gcd∂dχ
]

= 0 . (3.14)

Now in accord with the above approximations, we take r2 = ρ2 + L2 and f(r, x11) =

f(ρ, x11). It is also convenient to scale the ρ, x11 coordinates by L to define dimensionless

coordinates %, z:

ρ = L% , x11 = Lz .

13Our calculations could be extended to fluctuations of the M5-brane in the X2 direction (parallel to

the backgroundM2-branes) and of the two-form potential on the M5 worldvolume. Similarly, the M2-brane

fluctuations along the X1- and X2-directions could also be considered. In either case, these fluctuations

couple each other but not to the scalar fluctuations in the 6789-directions.
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Then, apart from an overall factor, the background parameters only appear in the harmonic

function (B.3) through the ratio L/R11 — see appendix B.

The uplifted D2-brane solution (r À R11) is applicable when LÀ R11 where we have

f(%) =
6π2`p

6N

R11L5

1

(1 + %2)5/2
. (3.15)

In the field theory, this solution corresponds to the regime g2
YM ¿ mq ¿ g2

YMN
1/5 [5]. On

the other hand, the near-core M2-brane solution is relevant for L¿ R11 where

f(%, z) =
25π2`p

6N

L6

1

(1 + %2 + z2)3
. (3.16)

This solution corresponds to even smaller values of the quark mass in the field theory, i.e.,

mq ¿ g2
YM. In the absence of the probe branes, the field theory on the worldvolume of the

M2-branes is superconformal. The probe breaks the conformal invariance by introducing

an energy scale mq.

We now compute the spectra of mesons corresponding to the transverse scalars for each

of the probe branes in the uplifted and near-core geometries. Let us begin with the M5-

brane probes. For the uplifted D2-brane solution (3.15), the harmonic function depends

only on %, and we proceed via separation of variables:

χ = eik·x Y`2(S2) eimLz/R11φup(%) , m = 0,±1,±2, . . . (3.17)

With M2 = −k2 and setting

M̄2 =
6π2`p

6N

R11L3
M2 , (3.18)

the equation of motion (3.14) reduces to the following radial equation for φup = φup(%)

∂2
%φup(%) +

2

%
∂%φup(%) +

[
M̄2

(1 + %2)5/2
− `2(`2 + 1)

%2
− L2

R2
11

m2

]
φup(%) = 0 . (3.19)

Then the meson mass spectrum is:

M2 =
M̄2

6π2

L3R11

N`p
6 =

4π

3
M̄2 m3

q

g2
YMN

, (3.20)

where the dimensionless constants M̄2 are the eigenvalues of (3.19). In the above, we have

used eq. (2.9) and the standard formulae (see, e.g., [15, 4]):

R11 = gsα
′1/2, `p = g1/3

s α′1/2, g2
YM = gsα

′−1/2. (3.21)

For m = 0, i.e., with no M-theoretic excitations, eq. (3.19) matches precisely the

expected equation (2.41) for the D2-D4 system and we recover precisely the same spectrum.

In the M-theory context, one can also excite modes along the x11-circle. Setting Φ =

φup(%)Y`2(S2), eq. (3.19) can be written as

−∇2Φ− M̄2

(1 + %2)5/2
Φ = − L2

R2
11

m2Φ (3.22)
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where ∇2 is the usual Laplacian in three-dimensional spherical polar coordinates. Hence

eq. (3.22) has the form of a three-dimensional Schroedinger equation with potential V =

−M̄2/(1 + %2)5/2 and energy eigenvalue E = −(L/R11)2m2. For small %, the potential

approaches −M̄2 while for large %, it approaches zero as −M̄2%−5. Thus, the lowest energy

eigenvalues will be (very) roughly equal to the minimum of the potential, −M̄2. Hence we

would have M̄2 ∼ m2 L2/R2
11 and the spectrum of such excitations would be

M̃2 ' m2 L5

N`p
6R11

= m2 m5
q

g6
YMN

. (3.23)

Comparing to eq. (3.20), we note that M̃2/M2 ∼ L2/R2
11. Recall that the uplifted D2

geometry applies in the regime LÀ R11 and so here these m 6= 0 excitations are extremely

heavy and very difficult to excite. As we move towards L ∼ R11, the harmonic function (3.5)

has a more pronounced dip in the x11 direction — see appendix B — and the M-theoretic

degrees of freedom become lighter. In the gauge theory, this becomes most pronounced at

mq ∼ g2
YM (i.e., L ∼ R11) where instanton effects are unsuppressed [4]. The latter reflect

the localization of the M2-brane on the x11-circle and so the background goes over to the

near core solution.

For the near core geometry (L ¿ R11), the harmonic function for our embedding is

given in (3.16). In this case, it is useful to use spherical coordinates in the (3,4,5,11)-space,

defining the radial coordinate %̄:

%̄2 = %2 + z2 . (3.24)

As usual, we proceed via separation of variables, taking

χ = eik·x Y`3(S3)φcore(%̄) , (3.25)

where eikx are plane waves in the 01-space and Y `3(S3) (`3 = 0, 1, 2, . . .) are spherical

harmonics on the S3 of unit radius satisfying (2.16). With M 2 = −k2 and now setting

M̄2 =
25π2N`p

6

L4
M2 , (3.26)

the full equation (3.14) reduces to a radial equation for φcore = φ(%̄):

∂2
%̄φcore(%̄) +

3

%̄
∂%̄φcore(%̄) +

[
M̄2

(1 + %̄2)3
− `3(`3 + 2)

%̄2

]
φcore(%̄) = 0 . (3.27)

The mass eigenvalues can again be determined numerically for this equation. The mass

spectrum of mesons on the codimension-one defect is now

M2 =
M̄2

25π2

L4

N`p
6 . (3.28)

Clearly, the scaling here has a different form than found in the in eqs. (3.20) and (3.23) in

the uplifted D2 background. Now, with the identification mq = L/(2πα′) = LR11/(2π`
3
p),

this mass scale would be M 2 ' m4
q/(g

4
YMN). However, we will argue in the discussion
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section that this interpretation is inappropriate and that the correct result, appropriate for

the superconformal field theory dual to the AdS4 × S7 core, is M 2 ' m2
q/N .

The computation of the spectra in the case of the M2-brane probe is essentially the

same as the M5-brane case. So in the following we only note the salient differences. In the

uplifted limit of the background, the ansatz (3.17) is replaced by

χ = e−iM t ei` θφ̃up(%) . (3.29)

The fact that the spatial dependence has been reduced to exp(−iM t) reflects the fact that

the fundamental fields are localized on a codimension-two defect, i.e., a point-like defect

in the 2+1 dimensions. Scaling the mass as in eq. (3.18), the radial equation (3.19) now

becomes

∂2
% φ̃up(%) +

1

%
∂%φ̃up(%) +

[
M̄2

(1 + %2)5/2
− `2

%2

]
φ̃up(%) = 0 . (3.30)

Hence the spectrum of bound states scales as in eq. (3.20) and in fact, this spectrum exactly

matches that calculated in section 2.4 with p = 2 since eq. (3.30) is precisely the same as

eq. (2.64) in this case. Note that since the M2-brane is confined to a point in the x11-circle,

there are no intrinsically M-theoretic degrees of freedom to be excited at this stage. Rather

the transverse scalars representing the fluctuations in the x11-direction simply match the

type 2 gauge modes in eq. (2.71) (while the type 1 modes of eq. (2.72) do not exist for

p = 2). Of course, this matches the three-dimensional duality relating the gauge field on

the D2-brane worldvolume to the x11 scalar on M2-brane [20].

For an M2-brane probing the core limit of the background, the ansatz (3.25) is replaced

by

χ = e−iM t Y`2(S2) φ̃core(%̄) . (3.31)

Scaling the mass as in eq. (3.26), the new radial equation is

∂2
%̄ φ̃core(%̄) +

2

%̄
∂%̄φ̃core(%̄) +

[
M̄2

(1 + %̄2)3
− `2(`2 + 1)

%̄2

]
φ̃core(%̄) = 0 (3.32)

and one arrives at mass eigenvalues scaling as in eq. (3.28).

4. Discussion

In this paper, we used the the gauge/gravity correspondence with flavour to derive the

spectrum of mesons for strongly coupled gauge theories in various dimensions. In particular,

we have studied a Dk-brane probe inserted into the near horizon geometry of N coincident

Dp-branes, which in the dual gauge theory corresponds to having introduced a fundamental

hypermultiplet into the (p + 1)-dimensional U(N) super-Yang-Mills theory. The brane

configuration was arranged to be supersymmetric, still preserving eight of the original

sixteen supercharges of the background. For each system of Dp- and Dk-branes considered,

we found that the mesons were deeply bound and the spectra were discrete. Up to numerical

coefficients, the mass gap for all of these theories had a universal form:

M ∼ mq

geff(mq)
, where g2

eff(mq) = g2
YMN mp−3

q . (4.1)
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Here geff(mq) is the dimensionless coupling constant in the gauge theory evaluated at the

quark mass mq, which sets the relevant energy scale for the mesons. The full spectrum

is given as the above mass (4.1) times dimensionless constants, which are computed as

eigenvalues of an ordinary differential equation.

These results apply in an intermediate energy regime of the gauge theory where the

dual ten-dimensional supergravity description is valid. In this regime where geff À 1,

eq. (4.1) then dictates that the mesons are deeply bound, i.e., the meson mass is much less

than (twice) the quark mass. Of course, this result has a simple interpretation from the

bulk point of view. There, a meson is a bound-state of two strings of opposite orientation

(corresponding to the quark-antiquark pair) stretching between the probe Dk-brane and

the singularity or horizon at r = 0. To form a meson, the ends at the horizon join together

to form an open string on the Dk-brane probe. The resulting string is much shorter than the

original ones corresponding to the ‘free quarks’, resulting in a lower energy configuration

or a meson with a mass much less than the quark mass. Since implicitly this discussion

depends only on the background geometry and the positioning of the probe brane, it is

perhaps less surprising that the scaling of the meson masses was same for all of the different

Dk-branes, even though these configurations represent very different gauge theories.

In fact, we now argue that the universal form (4.1) for the meson masses has a deeper

connection to holography. In investigating general Dp-brane backgrounds (2.5), one finds

that probing with wave-packets constructed of massless supergravity fields leads to a ‘holo-

graphic distance-energy’ relation [21] which may be expressed as:

E =
U

geff(U)
, where g2

eff(U) = g2
YMN Up−3 . (4.2)

Hence the energy of a such wave-packet propagating in the vicinity of (the minimal radius

of) the Dk-brane has precisely the energy as the excitations of the massless open string

fields on the probe brane. While this may seem a remarkable coincidence, the matching

of the open and closed string energies is crucial to the consistency of the gauge/gravity

duality. Before introducing any fundamental fields or probe branes, the duality establishes

a connection (4.2) between the energy scale in the field theory and the position in the

holographic dimension. As emphasized in [23], consistency then requires that physics in the

two dual theories must be local in both of these parameters. In the presence of probe branes,

locality of bulk gravity theory in the radial direction is, of course, obviously maintained.

Locality of gauge theory phyics in the energy scale was less obvious to begin with, but our

conclusions for the meson masses (4.1) establish this nontrivial feature is preserved after

the introduction of fundamental matter. Hence as demanded by holography, we again find

the desired locality on both sides of the duality.

We are lead then to conjecture that in fact holography dictates the energy scale of the

spectrum of mesons or massless brane fields must be as given in eq. (4.1). This conjecture

may then be tested in a variety of new contexts. For example, one might consider the

nonsupersymmetric construction of [7]. There one finds that if the quark mass is much

larger than the QCD scale (i.e., UKK) that the meson spectrum takes precisely the desired

form. Of course, for large mq, the system in [7] is essentially the Dp-D(p+4) configuration of
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section 2.2 with p = 4. A more interesting case to consider is the holographic construction

of [9] which involved a nonsupersymmetric configuration of D4-, D8- and D8-branes. In

this case, the probe brane configuration is very different from those considered here since

the D8-D8 system connect in a ‘wormhole’.14 However, if one tunes the model, such

that the minimal radius of the wormhole is above the QCD scale, one again finds that

the massive mesons have masses scaling as in eq. (4.1) [25, 26].15 This nonsupersymmetric

example, however, highlights one small subtlety. The quarks in the dual theory are actually

massless, by which we mean the ‘bare’ mass in the UV theory vanishes. However, the

infrared dynamics generates a finite ‘constituent’ quark mass, which can be identified with

the minimal radius of the D8-branes. When we say that the meson spectrum scales as

in eq. (4.1) implicitly we are using this infrared or constituent quark mass. For a general

supersymmetric configuration, the embedding of the probe brane is flat and so there will

be no distinction between the bare and constituent quark masses. However, we can expect

that in nonsupersymmetric constructions that the bare and constituent quark masses will

differ as a result of bending of the probe — although perhaps not as dramatically as in this

example. In such cases, it will be the constituent mass that is the relevant energy scale

determining the holographic scaling of the meson spectrum. As a final comment, we note

that the same energy scale appears in phase transitions for these systems [27].

As indicated above, the full meson spectrum is determined by solving an ordinary

differential equation and imposing regularity requirements. The masses are then given by

the above mass (4.1) times dimensionless constants. While in general one must resort to

numerics to determine the proportionality constants, it was possible to solve the ODE’s (in

terms of hypergeometric functions) and hence exact values for the proportionality constant

for p = 3 — see appendix A. One of the outstanding features of these p = 3 spectra (i.e.,

for D3-D3, D3-D5, D3-D7) is that they are highly degenerate: all states with the same

ν = n+ ` have the same mass. The D3-D7 case was studied extensively in [1] where it was

argued that this degeneracy may arise because of an extra, hidden SO(5) symmetry. A

detailed examination of the spectra in section 2 shows that no such degeneracy occurs for

p 6= 3 — see, e.g., table 2. Hence it seems that the degeneracy found for p = 3 is connected

to the conformal invariance of the N=4 super-Yang-Mills gauge theory.

The connection between the breaking of conformal invariance and of the degeneracy

of the meson spectrum can be made more precise as follows. If one considers states with

fixed ν = n + `, one finds in general that the mass increases (decreases) with increasing

` for backgrounds with p = 4 (p ≤ 3) — as can be seen, e.g., in tables 2a, b. This trend

seems to be connected to the running of the effective coupling (1.1) in the nonconformal

backgrounds. Given that the spectrum scales with M ∼ mq/geff , the individual masses

will depend on the precise value of the effective coupling which is relevant. For a given

state, the radial profile describes the ‘structure’ of the meson in energy space and one can

calculate the mean energy 〈U〉— see the technical details in appendix C. Tables 3a, b show

14Ref. [24] recently considered such probe configurations in a supersymmetric D4-brane background.

Ref. [7] also discusses a similar wormhole configuration for a D6-D6 pair in a D4 background.
15Apart from the massive spectrum, there is also a set of massless pions whose existence is required by

symmetry-breaking considerations.
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n

0 1 2 3

0 4.33 23.63 56.78 103.71

`2 1 21.02 52.11 96.90 155.42

2 48.45 91.32 147.83 218.01

3 86.63 141.29 209.53 291.47

n

0 1 2 3

0 1.67 6.74 14.64 25.41

`2 1 8.97 18.30 30.51 45.58

2 21.47 35.06 51.53 70.89

3 39.18 57.01 77.75 101.38

(a) (b)

Table 2: The spectrum for scalar fluctuations in the (a) D2-D4 and (b) D4-D6 brane configurations

in terms of M̄2
⊥(n, `2) .

n

0 1 2

0 1.4173 1.5764 1.6541

`2 1 1.3594 1.4620 1.5278

2 1.3375 1.4130 1.4676

n

0 1 2

0 2.9193 5.9310 8.8394

`2 1 2.1634 3.1276 4.0868

2 1.9985 2.5708 3.1427

(a) (b)

Table 3: The radial expectation value 2π〈U〉/mq for the scalar field χ in the (a) D2-D4 and (b)

D4-D6 brane systems.

the results for the D2-D4 and D4-D6 systems, which are of the general case. Note that 〈U〉
increases when the radial quantum number n is increased but decreases with increasing

`2.16 Hence combining the facts that the effective coupling grows with increasing energy

(radius) in the D4 background and that the meson masses scale (roughly) inversely with

geff , the meson masses would be expected to increase more with an increase in ` than with

a corresponding increase in n. Of course, the reverse trend should be expected for the D2

background, where the effective coupling decreases at larger energies. Hence this reasoning

reproduces the trend in the mass spectra commented on above and illustrated in table 2.

This phenomenon is similar to the effects seen in the spectroscopy of heavy-quark mesons

due to the running of the QCD coupling [28].

Ref. [29] calculated the form factors of the mesons in the D3-D7 system with respect

to various conserved currents. They found that the size of these bound states to be roughly

1/M ∼
√
g2

YMN/mq. From the point of view of supergravity, this result is not difficult to

understand: the form factors are determined by the overlap of various radial profiles and

M is the only scale in the problem. Hence it is the only dimensionful quantity that can

set the size of the mesons. This analysis can be extended to mesons in the general Dp-Dk

systems considered here and the same behaviour will be found with the meson size set by

1/M ∼ geff(mq)/mq. It would be interesting to study these issues in more detail.

16The latter is an interesting effect. The ‘angular momentum’ produces a repulsive, centrifugal barrier,

causing the peak of the wave function to move away from the origin. However, as `2 is increased, the

asymptotic potential is also raised causing the asymptotic wavefunction to fall off more quickly. The latter

is a stronger effect so that the wavefunction localizes at smaller radii and hence smaller 〈U〉, as seen in

tables 3a, b.
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As noted in section 2, we noted that the analysis of the meson spectrum fails for

p = 5 because there are no normalizable solutions. This is related to the usual problematic

features of holography for D5-branes [4]. At large radius, the coupling becomes large and

the appropriate gravity background is that of the S-dual NS5-brane, where the holographic

dual is N=(1,1) little string theory — see, e.g., [30, 31]. The latter background includes

an infinite throat containing delta-function normalizable states and so it is natural that

analogous ‘meson’ states would arise when a probe brane is introduced. This would be an

interesting topic for further study.

The computations of the p = 2 spectra in section 3 were motivated by the comparsion

with previous results for holographic mesons in (2+1)-dimensions [12]. The latter went

beyond the probe approximation and considered a holographic description of a large number

of flavours in the strongly coupled D2-D6 system. In particular, their construction began

with Nc D2-branes and Nf D6-branes alligned as shown in figure (2.31) and used the fully

back-reacted near-horizon geometry of [22] in the limit 1¿ Nf < Nc but with Nf/Nc finite.

In this limit with the back-reacted geometry, the fluctuations of the D6-brane correspond

to fluctuations in the supergravity background and so mesons are described by closed

string states in the bulk. Ref. [12] attempted to solve for meson masses numerically and

found a discrete spectrum with a mass gap M ∝ mq. The latter seems to contradict the

results in section 2.2.2 where we found that the meson masses scale as M ∝ m
3/2
q /g2

YMN .

This disagreement is simply resolved by realising that the two computations are actually

performed for different energy regimes in the field theory, as illustrated in figure 1. Our ten-

dimensional supergravity result holds in the intermediate energy g2
YMN

1/5 ¿ mq ¿ g2
YMN .

On the other hand, [12] consider the far infrared limit mq ¿ g2
YM, where the gravity

description becomes an M-theory configuration, i.e., an M2-brane background with orbifold

identifications [22].

To study meson spectra in different holographic regimes, we turned in section 3 to the

D2-D4 and D2-D2 systems for which probe brane computations are possible at both the

intermediate and far infrared energy scales. These correspond to defect theories but the

results of section 2 show that the mass scale of meson spectra remains the same in these

cases. In the infrared regime, the D2-brane lifts to an M2-brane and the D4- and D2-brane

probes lift to M5- and M2-branes, respectively. In the uplifted D2-brane regime, the masses

of the lowest lying mesons scale as M 2 ∝ L3R11/(Nc`
6
p) ∼ m

3/2
q /(g2

YMN), which matches

that found in the ten-dimensional regime. However, we see in eq. (3.28) that this scaling

changes in the near-core regime: M 2 = L4/(Nc`p
6). This scaling actually precisely matches

that found in [12] (once the AdS4 curvature, R6
AdS = Nc`p

6, is restored). This agreement

is almost better than we might have hoped for given that our probe approximation applies

for Nf/Nc = 0 whereas [12] has Nf/Nc small but finite.

As explained in the previous section, if we tentatively identified mq = L/(2πα′) =

LR11/(2π`
3
p) then the mass scale (3.28) in the near core regime would become M 2 '

m4
q/(g

4
YMN) with an extra factor of mq/g

2
YM compared to the intermediate regime where

ten-dimensional supergravity is valid. However, this is clearly an inappropriate interpre-

tation of the result (3.28) which describes the meson spectra in the far infrared where the
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gauge theory has flowed to the superconformal fixed point. In particular, the latter no

longer has any knowledge of the scales R11 or gYM. The introduction of a probe brane

in the AdS4 × S7 background corresponds to coupling the SCFT to massive fundamental

fields, which break the conformal invariance (mildly) through their mass. This mass scale

must be set by L, the only available scale in the supergravity description. Certainly one

should not expect that one can naively extend the identification mq ∝ L found in ten di-

mensions to the near core regime. In particular, L is now an arbitrary coordinate distance

in the core region. Instead we must re-evaluate using the standard distance-energy relation

for AdS4 [21], which associates the energy with the ‘standard’ AdS coordinate U . Then

with the appropriate coordinate transformation, the mass of the fundamental fields in this

regime becomes mq ' L2/`3p, which matches the choice made in [12]. The mass scale in the

meson spectrum is then M ' mq/N
1/2
c . Again this result matches the desired ‘holographic

distance-energy’ relation [21]. That is, the scaling of the meson spectrum here once again

conforms to the ‘energy locality’ demanded by holography, as discussed above.

It is also natural to consider the extension of the p = 4 theories to the strong coupling

M-theory regime, as well. In this case, the dilaton grows with radius in the D4 background

and one lifts the the M5-brane background at very high energies. In the dual description,

this corresponds to the UV completion of the original five-dimensional gauge theory being

a six-dimensional N=(0,2) SCFT (on a circle) [32]. If we introduce fundamental fields on

a codimension two defect as in section 2.4 with p = 4, the D4 probe also lifts to an M5-

brane (wrapping the eleventh dimension). The fundamental matter excitations are now

naturally strings associated with M2-branes ending on the probe M5-brane. The low-lying

‘mesons’ again correspond to fluctuations of the massless fields on the M5 probe and one

finds that the mass gap is again given by mq/N
1/2, in agreement with the ‘holographic

distance-energy’ relation [21].

As commented above, the agreement of our probe calculations in the AdS4 core of

the D2-brane background yielded remarkable agreement with the results at finite Nf/Nc

in [12]. It would be interesting to pursue this further in other backgrounds. Following

the results of [33], there have been several attempts [34] to establish fully back-reacted

backgrounds describing four-dimensional gauge theories at finite Nf/Nc. It seems further

work is needed to develop these solutions to the point where the meson spectra could be

calculated. However, some simple observations can be made at this stage. First, in such

backgrounds, the branes would be replaced by deformations of the supergravity background

and so the open-string excitations representing the mesons would be replaced by closed-

string states. On general grounds, the latter are expected to satisfy the ‘holographic

distance-energy’ relation in these new backgrounds. Hence, from this point of view, it

seems that holography will dictate the same kind of scaling in the meson spectra at both

finite and vanishing Nf/Nc. Hence we expect the ‘remarkable’ agreement observed here

for p = 2 might extend to more general situations.

One direction for future investigation could be considering mesons with higher spin in

the (p+ 1)-dimensional gauge theories. This would require a straightforward extension of

the calculations for the D3-D7 system in [1]. There the spectrum for large J was calculated
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from large semiclassical strings hanging down from the probe brane. These spinning string

solutions can also be extended to consider bound states of quarks with different masses

by introducing separated probe branes [35]. One universal result will be that in analogy

to [1], the spectrum will start with a Regge-like trajectory where the tension is governed

by the quark mass. In this regime, the gravity description corresponds to spinning strings

whose extent is (larger than the string scale but) smaller than the curvature scale of the

background. The Regge slope is then just the redshifted tension of fundamental string

and in field theory parameters is given by 1/α′eff ' m2
q/geff . While easily understood from

the supergravity point of view, this behaviour is surprising from a field theory point of

view as none of the theories considered here are confining [36]. For J À geff , the size of

string exceeds the background curvature scale. In this regime, it should be that the mass

spectrum can be understood as that of two nonrelativistic and widely separated quarks

which are weakly bound by a long-range potential, V ' −(g2
YMN/L

2)1/5−p — the latter

being that computed for two static quarks in the corresponding background [37].
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A. Analytic meson spectra for p = 3

In section 2 we studied the spectra of mesons corresponding to fluctuations of probe Dk-

branes in the near-horizon geometry of N coincident Dp-branes. For each brane configu-

ration and each type of fluctuation of the probe brane, we found an ordinary differential

equation for the radial profile. As discussed in section 2.2, the solutions of these differential

equations must be real-valued, regular and normalizable in order to be dual to a physical

meson state in field theory. Thus, solutions were chosen that were real and regular at

the origin. The eigenvalues M̄ were then determined by requiring that the solutions be

convergent as ρ→∞. The meson spectrum was then given by (2.19). Though it was not

possible to solve the differential equations analytically for general p, analytic solutions are

possible for p = 3 and we present these solutions and the resulting meson spectra in this

appendix.

The D3-D7 brane system was studied in [1] and we review the analytic solutions and

meson spectra briefly here. The branes were oriented as shown in the following array:

0 1 2 3 4 5 6 7 8 9

D3 × × × ×
D7 × × × × × × × ×

(A.1)

– 33 –



J
H
E
P
0
9
(
2
0
0
6
)
0
6
6

The D7-brane fluctuates in the 89-directions and the radial ODE for these scalar modes is

given in (2.18). Defining

α = −1

2
+

1

2

√
1 + M̄2 ≥ 0, (A.2)

the solution for the radial function φ(ρ) is

φ(ρ) = ρ`3(ρ2 + L2)−α F (−α , −α+ `3 + 1 ; `3 + 2 ; −ρ2/L2) , (A.3)

where F (a, b; c; y) is a hypergeometric function satisfying (see, e.g., [38])

y(1− y)u′′(y) + [c− (a+ b+ 1)y]u′(y)− ab u(y) = 0. (A.4)

To determine the behaviour of solutions as ρ→∞, the following asymptotic expansion of

F (a, b; c; y) is useful [38]:

lim
y→∞

F (a , b ; c ; y) =
Γ(c)Γ(b − a)

Γ(b)Γ(c − a)
(−y)−a +

Γ(c)Γ(a− b)
Γ(a)Γ(c− b) (−y)−b. (A.5)

Using this asymptotic expansion, the regularity of (A.3) is achieved by setting −α+`3+1 =

−n (n = 0, 1, 2, . . .). The solution is then

φ(ρ) =
ρ`3

(ρ2 + L2)n+`3+1
F (−(n+ `3 + 1) , −n ; `3 + 2 ; −ρ2/L2) , (A.6)

with mass eigenvalues

M̄2
s = 4(n+ `3 + 1)(n+ `3 + 2) . (A.7)

The solutions for the gauge fields are determined similarly. The ODE for the type 1, 2,

and 3 modes are given in eqs. (2.25), (2.27), and (2.28), respectively. The solutions are

φ1(ρ) = ρ`3(ρ2 + L2)−αF (−α+ `3 + 1 , −α ; `3 + 2 ; −ρ2/L2) , (A.8)

φ2(ρ) = ρ`3−1(ρ2 + L2)−αF (−α+ `3 + 1 , −α ; `3 + 2 ; −ρ2/L2) ,

φ3,+(ρ) = ρ`3+1(ρ2 + L2)−1−αF (−α+ `3 + 2 , −1− α ; `3 + 2 ; −ρ2/L2) ,

φ3,−(ρ) = ρ`3+1(ρ2 + L2)−1−αF (−α+ `3 , 1− α ; `3 + 2 ; −ρ2/L2) ,

with spectra
M̄2

1 = 4(n+ `3 + 1)(n+ `3 + 2) , n ≥ 0 , `3 ≥ 0 ;

M̄2
2 = 4(n+ `3 + 1)(n+ `3 + 2) , n ≥ 0 , `3 ≥ 1 ;

M̄2
3,+ = 4(n+ `3 + 2)(n+ `3 + 3) , n ≥ 0 , `3 ≥ 1 ;

M̄2
3,− = 4(n+ `3)(n+ `3 + 1) , n ≥ 0 , `3 ≥ 1 .

(A.9)

We can see explicitly here that the spectra of the various modes are related as in eq. (2.56).

As noted in [1], all states with the same n + `3 have the same mass and so the meson

spectrum has a large degeneracy.

The D3-D5 brane system was oriented as follows:

0 1 2 3 4 5 6 7 8 9

D3 × × × ×
D5 × × × × × ×

(A.10)
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In this system, there are several classes each of scalar and gauge field fluctuations. First,

the scalar fluctuations of the D5-brane may be parallel to the background D3-branes along

the X4 direction or orthogonal to the D3-branes in the 789-directions. The gauge field

modes are characterized as type 1, 2 and 3, where the type 3 excitations couple to the

parallel scalar modes. The ODE for the orthogonal scalars and the type 1 gauge fields

are identical and are given in eqs. (2.41) and (2.48), respectively. The solutions for these

modes are

φ⊥(ρ) = φ1(ρ) = ρ`2(ρ2 + L2)−α F (−α+ `2 + 1/2 , −α ; `2 + 3/2 ; −ρ2/L2) , (A.11)

and the resulting spectra are

M̄2
⊥ = M̄2

1 = 4(n+ `2 + 1/2)(n + `2 + 3/2) , n ≥ 0 , `2 ≥ 0 . (A.12)

The type 2 gauge fields satisfy eq. (2.49) and the solutions are

φ2(ρ) = ρ`2−1(ρ2 + L2)−α F (−α+ `2 + 1/2 , −α ; `2 + 3/2 ; −ρ2/L2) , (A.13)

with the corresponding spectrum

M̄2
2 = 4(n+ `2 + 1/2)(n + `2 + 3/2) , n ≥ 0 , `2 ≥ 1 . (A.14)

For `2 = 0, the parallel fluctuations are not coupled to the gauge fields and the ODE

reduces to eq. (2.50). The solution is

φ||(ρ) = (ρ2 + L2)α F (α , α+ 5/2 ; 3/2 ; −ρ2/L2) , (A.15)

with masses

M̄2
|| = 4(n+ 3/2)(n + 5/2) , n ≥ 0. (A.16)

The type 3 gauge fields and the parallel scalar fluctuations are coupled for `2 ≥ 1. The

diagonalized differential equations were given in eq. (2.54) with solutions

φ̃+(ρ) = ρ`2+1(ρ2 + L2)−α−1 F (−α+ `2 + 3/2 , −α− 1 ; `2 + 3/2 ; −ρ2/L2)

φ̃−(ρ) = ρ`2+1(ρ2 + L2)−α−1F (−α+ `2 − 1/2 , −α+ 1 ; `2 + 3/2 ; −ρ2/L2) ,

and spectra

M̄2
+ = 4(n+ `2 + 3/2)(n + `2 + 5/2) , n ≥ 0 , `2 ≥ 1 ;

M̄2
− = 4(n+ `2 − 1/2)(n + `2 + 1/2) , n ≥ 0 , `2 ≥ 1 .

(A.17)

The spectra for the various modes satisfy the relations in eq. (2.56) and there is again a

large degeneracy as the masses only depend on n+ `2.

Finally, the D3-D3 brane system was oriented as shown in the following array:

0 1 2 3 4 5 6 7 8 9

background × × × ×
probe × × × ×

(A.18)
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Again, the scalar and gauge field fluctuations fall into several classes. The D3-brane probe

fluctuates in the X2 and X3 directions parallel to the background branes and also in the

6789-directions orthogonal to the background branes. The radial ODE’s for the orthogonal

fluctuations (2.64) and for type 1 gauge fields (2.73) were identical. The solutions for these

fields are

φ⊥(ρ) = φ1(ρ) = ρ|`|(ρ2 + L2)−α F (−α+ |`| , −α ; |`|+ 1 ; −ρ2/L2) , (A.19)

and with spectra

M̄2
⊥ = M̄2

1 = 4(n+ |`|)(n+ |`|+ 1) , n ≥ 0 , |`| ≥ 1 . (A.20)

The diagonalized radial equation for Ψ corresponding to the coupled X 2,3-scalars appears

in eq. (2.68). The ` ≥ 0 and ` < −1 solutions17 are, respectively,

φ||,+(ρ) = ρ`(ρ2 + L2)−α−1 F (−α− 1 , −α+ `+ 1 ; `+ 1 ; −ρ2/L2),

φ||,−(ρ) = ρ|`|(ρ2 + L2)−α−1 F (−α+ 1 , −α+ |`| − 1 ; |`|+ 1 ; −ρ2/L2) .

with the corresponding spectra

M̄2
+ = 4(n+ `+ 1)(n+ `+ 2) , n ≥ 0 , ` ≥ 0;

M̄2
− = 4(n+ |`| − 1)(n+ |`|) , n ≥ 0 , ` < −1 .

(A.21)

Since the ODE defining the spectrum for the Ψ∗ modes is eq. (2.68) with ` → −`, the

spectrum for these modes is:

M̄2
∗,− = 4(n+ |`|+ 1)(n+ |`|+ 2) , n ≥ 0 , ` ≤ 0;

M̄2
∗,+ = 4(n+ `− 1)(n+ `) , n ≥ 0 , ` > 1 .

(A.22)

For type 2 gauge fields, the radial equation was given in eq. (2.75) and has solutions

φ2(ρ) = ρ|`|−1(L2 + ρ2)−α F (−α+ |`| , −α ; |`|+ 1 ; −ρ2/L2) , (A.23)

and the resulting spectrum is

M̄2
2 = 4(n+ |`|)(n+ |`|+ 1) , n ≥ 0 , |`| ≥ 1 . (A.24)

The spectra of these bosonic modes are related as in eq. (2.79) and as the masses depend

only on n+ |`|, the spectrum again exhibits a large degeneracy.

B. Localized M2-brane background

In section 3.1, we studied an M5-brane probe in the near-horizon geometry of N coincident

M2-branes. Here, we briefly discuss some details about the near-horizon geometry of the

M2-branes.

17Recall the discussion of the ` = −1 modes in section 2.4.
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The metric for N coincident M2-branes is (see, e.g., [15] and references therein)

ds2 = f−2/3(−dt2 + dx2
1 + dx2

2) + f1/3(dr2 + r2dΩ2
6 + dx2

11) (B.1)

where r is a radial coordinate in the 3456789-space and x11 is the coordinate in the eleventh

dimension. We take the eleventh dimension to be compact, with x11 = x11 + 2πR11.

For simplicity, we consider the harmonic function for the case when all N M2-branes are

localized at some point along x11 — of course, more complicated configurations are possible.

The harmonic function for the M2-branes can simply be written as a sum over images in

the x11-direction [5]:

f(r, x11) =
∞∑

n=−∞

25π2`p
6N

[r2 + (x2
11 + 2πnR11)2]3

. (B.2)

It is relatively straightforward to sum this expression in closed form using techniques from

complex analysis (see, e.g., [39]). The final result can be written as:

f(r, x11) =
2π2`p

6N

R6
11

[
3
R5

11

r5

sinh(r/R11)

cosh(r/R11)− cos(x11/R11)

+3
R4

11

r4

cosh(r/R11) cos(x11/R11)− 1

(cosh(r/R11)− cos(x11/R11))2

−R
3
11

r3

sin(r/R11)(2 − cos2(x11/R11)− cosh(r/R11) cos(x11/R11))

(cosh(r/R11)− cos(x11/R11))3

]
. (B.3)

As in the fluctuation analysis in section 3, we take r2 = ρ2 + L2 and scale the ρ and x11

coordinates by L:

ρ = L% , x11 = Lz ,

where the z-periodicity is given by z ∼ z + 2πR11/L. The harmonic function (B.3) can

then be expressed as

f(ρ, z) =
2π2`p

6N

R6
11

[
3
R5

11

L5

1

(1 + %2)5/2

sinh( L
R11

√
1 + %2)

cosh( L
R11

√
1 + %2))− cos( L

R11
z)

+3
R4

11

L4

1

(1 + %2)2

cosh( L
R11

√
1 + %2)) cos( L

R11
z)− 1

(cosh( L
R11

√
1 + %2))− cos( L

R11
z))2

− R3
11

L3
× (B.4)

× 1

(1+%2)3/2

sin( L
R11

√
1+%2))(2− cos2( L

R11
z)− cosh( L

R11

√
1+%2)) cos( L

R11
z))

(cosh( L
R11

√
1 + %2))− cos( L

R11
z))3

]
.

In section 3.1 we focused on the regimes LÀ R11 and L¿ R11, which we referred to

as the “uplifted D2-brane” and “near core” solutions, respectively. Figure 2 displays plots

of the full function (B.5) for various values of L/R11 to illustrate how the full harmonic

function changes in different parameter regimes. Figure 2a displays the harmonic function

for L/R11 = 50. This illustrates how in the L À R11 regime the structure in the x11

direction is washed out and f essentially depends only on the radial coordinate ρ. That is,

the full harmonic function is well-approximated by the uplifted D2-brane solution (3.15).
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(a) (b) (c)

Figure 2: The harmonic function −R6
11/(2π

2`p
6N)f(ρ, z) (where f(ρ, z) is given by (B.5)) for (a)

L/R11 = 50, (b) L/R11 = 3, and (c) L/R11 = 10−4.

The harmonic function in the limit L ¿ R11 is shown in figure 2c, where L/R11 = 10−4.

In this case, the structure in the ρ and z coordinates is the same and f(ρ, z) can be

approximated by the near core solution (3.7). Figure 2b shows the harmonic function for

L/R11 = 3, an intermediate regime.

C. Radial expectation values

In order to compute the expectation value 〈r〉 (of the radial coordinate), the radial eigen-

functions must be normalized. Here, we normalize the modes following the prescription

of ref. [40]. We briefly review their formalism (which is a simple generalization of the

usual normalization of modes in four dimensional quantum field theory) before modifying

it appropriately for our uses.

Consider a scalar field propagating in a (d+ 1 + k)-dimensional spacetime with metric

ds2(g) = f(y)ηµνdx
µdxν + g⊥mndy

mdyn

where µ, ν = 0, . . . d, m,n = 1, . . . , k. For a scalar field with the Lagrangian density

L =
√−ggab∂aΦ∂bΦ, (C.1)

the canonical commutator is

[
Φ(x, y), Φ̇(x′, y′)

]
= i

f(y)√−g δ
d(x− x′)δk(y − y′).

Specializing for the moment to the case d = 4 and expanding the field as

Φ(x, y) =
∑

α

∫
D3k

(2π)3

1

2k0

(
aα(k)eik·xψα(y) + h.c.

)
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with the oscillators covariantly normalized as [aα(k), a†β(k′)] = (2π)3δ(3)(k − k′)δαβ , the

modes in y-space are then normalized according to
∫
dky

√
g

f
ψα(y)ψ∗β(y) = δαβ .

For any one of the Dp-Dk brane configurations, the Lagrangian density for the scalar

fields χ corresponding to fluctuations of the Dk-brane transverse to the Dp-branes was

(omitting multiplicative constants)

L = e−φ
√
−det gabf

−1gab∂aχ∂bχ (C.2)

where gab is the induced metric on the Dk-brane. Comparing (C.1) and (C.2) suggests that

for the scalar field confined to the Dk-brane, the factor
√−det gab should be replaced by

e−φ
√−det gabf

−1. Thus, the canonical commutator should be

[
χ(x, y), χ̇(x′, y′)

]
= i

f(y)

e−φ
√−det gabf−1

δd(x− x′)δk(y − y′)

and with χ expanded in terms of Fourier modes and spherical harmonics (as described in

the text), the measure for the normalization for the radial functions φ(%) should be

µ(%) = e−φ
√
−det gabf

−2. (C.3)

Hence, the radial expectation value of any function will be given by

〈f(%)〉 =

∫∞
0 f(%)µ(%)|φ(%)|2d%∫∞

0 µ(%)|φ(%)|2d% . (C.4)

where the radial measure for any one of the Dp-Dk brane systems is

µp,k(%) =
%1+ k−p

2

(1 + %2)
7−p

2

.

Given the standard duality between energy and radius, i.e., U = r/α′, the radial

profiles give the wave-function in energy — that is, µ(%)|φ(%)|2 serves somewhat like a

parton distribution function. The expectation value 〈r〉 gives a measure of the mean energy

of the components of a given meson state. Using (C.4) and φ(%) for the transverse scalar

fluctuations of the probe brane, we computed 2π〈U〉/mq = 〈(1 + %2)1/2〉 for the Dp-Dk

systems. Note that for p = 3, the calculations can be done analytically while for p 6= 3, the

results are obtained numerically. Explicit results for the D2-D4 and D4-D6 configurations

are displayed in table 3. These are typical of the general case. Note that 〈U〉 increases

when the radial quantum number is increased, but decreases with increasing `2.

In [1], it was noted for the D3-D7 system that for large R-charge, ` À n, the radial

profiles were sharply peaked at %peak = 1. One can see that the same peaking arises for

the mesons on other probe branes in the D3 background from the analytic solutions, e.g.,

eqs. (A.8), (A.11) and (A.19). This radius corresponds to the radius of a null geodesic on

the induced probe brane metric orbiting on the internal space at a constant value of %. One

expects a similar peaking for occurs for general p, for which the geodesic analysis yields

%2
peak = 2/(5 − p). For the large R-charge limit, ` À n, one can then infer 2π〈U〉/mq '√
(7− p)/(5 − p).
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